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printed by CPI-Wöhrmann Print Service, Zutphen.

http://www.wps.nl

Copyright c⃝Dongshuang Hou, Enschede, 2013.

ISBN: 978-90-365-0005-0

ISSN: 1381-3617(CTIT Ph.D. thesis Series No.13-253)

DOI:10.3990./1.9789036500050 All rights reserved. No part of this work may

be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, or otherwise,

without prior permission from the copyright owner.



MODELS, THEORY AND APPLICATIONS

IN COOPERATIVE GAME THEORY

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op donderdag 28 August 2013 om 16:45 uur

door

Dongshuang Hou

geboren op 10 November 1983

te HeNan, China



Dit proefschrift is goedgekeurd door de promotoren

prof. dr.Marc Uetz en dr. Theo Driessen



Preface

This thesis consists of an introductory chapter (Chapter 1) followed by nine

research chapters (Chapters 2–10), each of which is written as a self-contained

journal paper, except that all references are gathered at the end of the thesis.

These nine chapters are based on the nine papers that are listed below and

have been submitted to journals for publication. The paper that forms the

basis for Chapter 5 has been published in the International Journal of Game

Theory, the papers underlying Chapter 2 and Chapter 8 are both accepted

by the Journal Applied Mathematics and the paper underlying Chapter 10

is accepted by the Journal International Game Theory Review. The other

papers are in different stages of the refereeing process. Chapters 2, 3 and 4

deal with game models, Chapters 5, 6 and 7 contain theoretical contributions

to Cooperative Game Theory, while Chapters 8, 9 and 10 can be understood as

the application of Game Theory. This explains the title of the thesis. Since the

thesis has been written as a collection of more or less independent papers, the

reader will find a certain amount of repetition of relevant concepts, definitions

and background. The author apologizes for any inconvenience.

Papers underlying this thesis

[1] Hou, D. and Theo, T.S.H., (2012), The Core and Nucleolus in a model

of information transferal, Journal of Applied Mathematics. Article ID

379848, doi:10.1155/2012/379848 (Chapter 2)
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[2] Hou, D., Theo, T.S.H. and Aymeric, L., Convexity and the Shapley value

in Bertrand Oligopoly TU-games with Shubik’s demand functions. Work-

ing paper (Chapter

3)

[3] Hou, D. and Theo, T.S.H., The Shapley value and the Nucleolus of Service

cost savings games. Working paper (Chapter 4)

[4] Theo, T.S.H. and Hou, D., (2010), A note on the Nucleolus for 2−convex

TU games. International Journal of Game Theory. Vol.39 (Chapter 5)

[5] Hou, D. and Theo, T.S.H., (2013), A new characterization of the Pre-

kernel for TU games through its indirect function and its application to

determine the Nucleolus for three subclasses of TU games. Contributions

to Game Theory and Management vol. VI(GTM2012) (Chapter 6)

[6] Hou, D. and Theo, T.S.H., The indirect function of compromise stable

TU games as a tool for the determination of its Nucleolus and Pre-kernel.

working paper (Chapter 7)

[7] Hou, D. and Theo, T.S.H., (2012), Interaction between Dutch Soccer

Teams and Fans: A Mathematical Analysis through Cooperative Game

Theory. Journal of Applied Mathematics. Vol.3 No.1 (Chapter 8)

[8] Hou, D. and Theo, T.S.H., Data cost games as an application of 1-

concavity in cooperative game theory. Working paper (Chapter 9)

[9] Hou, D. and Theo, T.S.H., (2013), Convexity of the “Airport Profit

Game” and k-Convexity of the “Bankruptcy Game”, accepted by Inter-

national Game Theory Review (Chapter 10)



Notation

N = {1, 2, · · · , n} the player set

2N = {S | S ⊆ N,S ̸= ∅} the set of all coalitions

S, S ⊆ N coalition

s or |S| the cardinality of the set S

GN the game space with player set N

TUN the cooperative game space with player set N

G the universe of all game spaces

R the set of real numbers

Rn the set of n-dimension vector space

e⃗i, i ∈ N the i-th unit vector

v(S) the value or worth of coalition S

(N, v) a cooperative game with transferable utility or TU-game

IN imputation set

C(N, v) The Core of game v

Sh(N, v) the Shapley value of game v

Nu(N, v) the Nucleolus of game v

iii
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Chapter 1

Introduction

ABSTRACT - In this chapter, the history of game theory is introduced

and a short general introduction to the basis knowledge in game theory

is given together with some famous examples.

1.1 Game theory

With the publication of Theory of Games and Economic Behavior by John

von Neumann and Oscar Morgenstorn in 1944, cooperative games have been

studied for 69 years. Game theory, or interactive decision theory, is a math-

ematical framework for modeling and analyzing conflict situations involving

economic agents with possibly diverging interests. For a given economic prob-

lem one extracts the essential features, they are integrated in a model of the

game, the game is analyzed and the result is translated back into economic

terms. The construction of the appropriate game is not a matter of routine

but is an essential part of the analysis. Thus, game theory provides a language

and framework allowing for a systematic study of various features of behav-

ioral interaction. It can be used to describe economic situations which at

first sight may seem very different and to recognize common elements. Game

theory is a mathematical framework that can be classified into two branches:

Noncooperative and Cooperative game theory.

Noncooperative game theory can be used to analyze the strategic decision

making processes of a number of independent entities, i.e., players, that have

1



Introduction 2

partially or totally conflicting interests over the outcome of a decision pro-

cess which is affected by their actions. Essentially, noncooperative games can

be seen as capturing a distributed decision making process that allows the

players to optimize, without any coordination or communication, objective

functions coupled in the actions of the involved players. We note that the

term noncooperative does not always imply that the players do not cooperate,

but it means that, any cooperation that arises must be self-enforcing with no

communication or coordination of strategic choices among the players.

Cooperative game theory focusses on cooperative behavior by analyzing the

negotiation process within a group of players in establishing a contract on a

joint plan of activities, including an allocation of the correspondingly generated

reward. Particularly, the possible joint reward of each possible coalition (a

subgroup of cooperating players) are taken into account in order to allow for

a better comparison of each player’s role and impact within the group as a

whole, and to assign a compromise allocation (a solution) in an objectively

reasonable way. Depending on the exact underlying context the coalitional

reward can be viewed as the actual result of optimal cooperation or, if partly

cooperation is infeasible or if the joint rewards depend on specific assumptions

on behavior outside a coalition, as the result of a consistent thought experiment

for comparative purposes only. The most basic format of a cooperative game

is the model of Transferable Utility games, shortly TU-games. In this thesis,

we use TUN to denote the cooperative game space with player set N .

1.2 Cooperative games in Characteristic Function
Form

The following are standard definitions, concepts and theories in Game Theory.

We refer to [4] and [33].

Definition 1.1. A cooperative game with transferable utility or TU-game in
characteristic function form is an ordered pair (N, v) where N is a finite set
and the characteristic function v : 2N → R is a characteristic function on the
set 2N of all subsets of N such that v(∅) = 0.

A subset S of N is called a coalition. The number v(S) can be regarded

as the the value or worth of coalition S in the game v.
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Example 1.1. (a glove market game) Let N be divided into two disjoint
subgroups L and R : N = L ∪ R,L ∩ R = ∅. Members of L each have one
left hand glove, members of R one right hand glove. A single glove is worth
nothing, a (right-left) pair 10 Euro. This situation can be described by a
TU-game (N, v) where

v(S) = 10min{|L ∩ S|, |R ∩ S|} for all S ∈ 2N .

A TU-game (N, v) is called monotonic if v(S) ≤ v(T ) for all S, T ∈ 2N

with S ⊆ T . A monotonic game (N, v) with v(S) ∈ {0, 1} for all S ∈ 2N and

v(N) = 1 is called simple game.

Example 1.2. (a voting game) The security council of the United Nations
consists of 5 permanent members and 10 nonpermanent members. To pass a
resolution, at least 9 (out of 15) member votes to pass are needed, with all 5
permanent members voting to pass the resolution. If we use T = {1, 2, ..., 5}
to denote the five permanent members and 6, 7, . . . , 15 to denote the nonper-
manent members, then this voting situation can be described by the simple
TU-game (N, v) given by

v(S) =

{
1, S ⊇ T, |S| ≥ 9;
0, otherwise.

In this case, the game (N, v) does not reflect monetary gains but voting

power instead. A coalition is assigned a value of 1 if and only if this coalition

has five permanent members and at least four nonpermanent member votes

to pass bills.

Many TU-games (N, v) derived from practical situations satisfy super-

additivity, i.e.

v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N with S ∩ T = ∅. (1.2.1)

Condition (1.2.1) is satisfied in many of the applications of TU-games. Indeed,

it may be argued that if S ∪ T forms, its members can decide to act as if S

and T had formed separately. Doing so they will receive v(S) + v(T ), which

implies condition (1.2.1). Nevertheless, quite often superadditivity is violated.

Anti-trust laws may exist, which reduce the profits of S ∪ T , if it forms. Also,
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large coalitions may be inefficient, because it is more difficult for them to reach

agreements on the distribution of their proceeds.

A game (N, v) is called additive if

v(S ∪ T ) = v(S) + v(T ) for all S, T ∈ 2N with S ∩ T = ∅.

Note that an additive game is determined by a vector a ∈ RN with ai =

v({i}), i ∈ N , since v(S) =
∑

i∈S ai for all S ∈ 2N . An important notion is

strategic equivalence of games: two TU-games (N, v) and (N,w) are called

S−equivalent if there is a real number k > 0 and a vector a ∈ RN (an additive

game) such that

w(S) = k · v(S) +
∑
i∈S

ai, for all S ∈ 2N ,

or shortly, such that w = kv + a.

The positive number k reflects a rescaling of monetary units while adding the

vector a boils down to giving each player a fixed amount of money (in the new

units) independent of the coalition under consideration. Clearly, if v can be

used to model a cooperative situation, also w can, and the other way around.

Example 1.3. (A spanning tree game) Consider three communities 1, 2 and 3
(the players) and a power source 0. For all possible links the connection costs
are shown in picture 1.1.

1

0

3

2

40

40

50

30

20

10

Pic.1.1: The spanning tree problem of Example 1.3.

Assuming that each player has to be connected to the source and the min-
imal costs of each coalition to connect each of its members to the source is
given by the function c : 2N → R with
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S ∅ {1}{2}{3} {1, 2}{1, 3}{2, 3}{1, 2, 3}

c(S) 0 50 40 20 70 60 30 60

Formally, we need to translate the costs into rewards to obtain a TU-

game. Obviously this can be done by considering (N, v0) with N = {1, 2, 3}
and v0 = −c. A more standard way to do is to consider the cost savings game

(N, v) defined by

v(S) =
∑
i∈S

c({i})− c(S) for all S ∈ 2N .

Since v = v0 + a with a ∈ RN such that ai = c({i}) for all i ∈ N, v and v0 are

S−equivalent. For the cost savings game we find

S ∅ {1}{2}{3} {1, 2}{1, 3}{2, 3}{1, 2, 3}

v(S) 0 0 0 0 20 10 30 50

We will come back to this type of games later on.

1.3 Solution concepts in Cooperative game theory

This section will make a start with analyzing (solving) TU-games. From now

on we are assuming that the players are negotiating about the formation of the

grand coalition N and that in the process they are trying to allocate v(N) in

a fair and justifiable way among themselves, in particular taking into account

the values v(S) of every possible coalition S ∈ 2N .

Let Φ be a value on GN where GN is the game space with player set N .

Some obvious requirements of an allocation for a game v ∈ TUN are

(i) Efficiency:
∑
i∈N

Φi(v) = v(N).

(ii) Individual rationality: Φi(v) ≥ v({i}) for all i ∈ N .

(iii) Linearity: Φ(α · v + β · w) = α · Φ(v) + β · Φ(w), for all games (N, v),

(N,w), and all α, β ∈ R.

(iv) Dummy player property: Φi(v) = v({i}), for all games and any dummy
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player i ∈ N . Player i is a dummy player in the game (N, v) if v(S ∪ {i}) −
v(S) = v({i}) for all S ⊆ N \ {i}.
(v) Substitution property: Φi(v) = Φj(v), for substitutes i and j in any game.

Players i and j are called substitutes if both of them are more desirable, or

equivalently, the equality for their marginal contributions, that is, v(S∪{i}) =
v(S ∪ {j})), for all S ⊆ N \ {i, j}.

Allocations satisfying (i) and (ii) are called imputations. The set of all

imputations of a game v ∈ TUN is denoted by I(v). Clearly we have

I(v) ̸= ∅ ⇔ v(N) ≥
∑
i∈N

v({i}).

Moreover, it is easy to verify that I(v) = Conv({ri}i∈N ), where for each

i ∈ N, ri ∈ RN is defined by

rik =

 v({k}), if k ̸= i;

v(N)−
∑

j∈N\{k} v({j}), if k = i.

for all k ∈ N .

Example 1.4. Let (N, v) be such that N = {1, 2, 3}, v({1}) = v({3}) =
0, v({2}) = 3, v({1, 2}) = v({2, 3}) = 4, v({1, 3}) = 1 and v({1, 2, 3}) = 6.
Then r1 = (3, 3, 0), r2 = (0, 6, 0) and r3 = (0, 3, 3). The imputation set I(v) is
given by

I(v) = Conv({(3, 3, 0), (0, 6, 0), (0, 3, 3)}).

The Imputation set of this game can be shown in next picture.



Introduction 7

(6,0,0) (0,6,0)

(0,0,6)

(0,3,3)

(3,3,0)

x1 = 0
x2 = 0

x3 = 0

Pic. 1.2: The Imputation set of the game in example 1.4.

Next we introduce one of the most fundamental concepts within the theory

of cooperative games.

Definition 1.2. The Core Core(v) of a game v ∈ TUN is defined by

Core(v) = {x ∈ Rn|
∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S) for all S ⊆ N}.

So, Core elements are imputations (i.e. efficient and individually rational)

which are stable against coalitional deviations. No coalition can rightfully

object to a proposal x ∈ Core(v) because what this coalition is allocated in

total according to x (i.e.
∑

i∈S xi) is at least what it can obtain by splitting off

from the grand coalition (i.e. v(S)). In particular, if
∑

i∈S xi > v(S), then in

any division of v(S) among the members of S, at least one player gets strictly

less then what he gets according to x.

Example 1.5. For the game (N, v) of Example 1.4 the Core is given by

Core(v) = Conv({(2, 4, 0), (1, 5, 0), (0, 5, 1), (0, 4, 2), (1, 3, 2), (2, 3, 1)}).

In general, since the Core is bounded and is determined by a finite sys-

tem of linear inequalities, it is a polytope: a convex hull of finitely many

points. Moreover, it is not difficult to check that the Core is representation-

independent. More specifically the Core satisfies relative invariance with re-

spect to S−equivalence, i.e. if w = kv + α(k > 0, α ∈ RN ), then x ∈ Core(v)

implies that kx+ α ∈ C(w).
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Unfortunately, a game can have an empty Core. Thus, it is necessary to

give an alternative solution. In this sense, many possibilities have been pro-

posed in the literature, as the Shapley value, Nucleolus, the Kernel, Banzhaf

value, ϵ−Core, etc.

1.3.1 The Shapley value and convex games

This section introduces the one-point solution concept for TU-games. The

Shapley value will assign to each game v ∈ TUN a unique vector Sh(v) ∈ RN .

Note that the Core is not a one-point solution concept: the Core may be empty

or may consist of more than one point.

The Shapley value Sh(v) : TUN → RN is defined by

Shi(v) =
1

|N |!
∑

σ∈Π(N)

mσ(v)

for all v ∈ TUN . Here Π(N) := {σ : {1, 2, . . . , |N |} → N | σ is bijective} is

the set of all orders on N and the marginal vector mσ(v) ∈ RN , for σ ∈ Π(N),

is defined by

mσ
σ(k) = v({σ(1), σ(2), . . . , σ(k − 1), σ(k)})− v({σ(1), σ(2), . . . , σ(k − 1)})

for all k ∈ {1, 2, . . . , n}.

In a marginal vector mσ(v) players enter the game one by one in the order

σ(1), σ(2), . . . , σ(n) and to each player is assigned the marginal contribution

he creates by joining the group of players already present. Since the Shapley

value averages all marginal vectors, it thus can be interpreted as an average

of marginal contributions.

The Shapley value can also be characterized by means of properties for

one-point solution concepts, i.e. efficiency, symmetry, the dummy property

and additivity. The combination of these four properties characterizes the

Shapley value. Not only does the Shapley satisfy these propertied but it is the

only one-point solution concept on TUN satisfying all four properties at the

same time.

Theorem 1.1. [4] The Shapley value Sh is the unique one-point solution
concept on TUN that satisfies efficiency, symmetry, the dummy property and
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additivity. Moreover, with v =
∑

T⊆N,T ̸=∅ cTuT , we have

Shi(v) =
∑

T⊆N,T∋i

cT
|T |

for all i ∈ N .

Example 1.6. Consider the game v ∈ TUN with N = {1, 2, 3}, v({1}) =
v({2}) = v({3}) = 0, v({1, 2}) = 20, v({1, 3}) = 10, v({2, 3}) = 30 and v(N) =
50. For this game , all marginal vectors are given by

σ mσ
1 (v) mσ

2 (v) mσ
3 (v)

(1,2,3) 0 20 30

(1,3,2) 0 40 10

(2,1,3) 20 0 30

(2,3,1) 20 0 30

(3,1,2) 10 40 0

(3,2,1) 20 30 0

Since Sh(v) is the average of these six marginal vectors, we find

Sh(v) =
1

6
(0, 20, 30) + . . .+

1

6
(20, 30, 0) = (11

2

3
, 21

2

3
, 16

2

3
).

Two alternative characterizations of the Shapley value are provided in the

next theorem.

Theorem 1.2. [4] Let v ∈ TUN . Then, for all i ∈ N ,

(i)Shi(v) =
∑

S⊆N,S ̸∋i

|S|!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)).

(ii)Shi(v) =
1

n
(v(N)− v(N\{i})) +

∑
j∈N\{i}

Shi(v,N\{j}).

Next we provide a characterization of the Shapley value based on the prop-

erty of strong monotonicity. A solution Φ : TUN → RN satisfies strong mono-

tonicity if for all games v, w ∈ TUN and all i ∈ N satisfying

v(S ∪ {i})− v(S) ≤ w(S ∪ {i})− w(S)
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for all S ⊆ N\{i}, it holds that

Φi(v) ≤ Φi(w).

Theorem 1.3. [49] The Shapley value Sh is the unique one-point solution
concept on TUN that satisfies efficiency, symmetry, and strong monotonicity.

The Weber set W (v) for a game v ∈ TUN is defined as the convex hull of

all marginal vectors:

W (v) = Conv{mσ(v)|σ ∈ Π(N)}.

Note thatW (v) ̸= ∅. The following theorem states that the Weber set contains

the Core as a subset.

Theorem 1.4. [49] Let v ∈ TUN . Then Core(v) ⊆ W (v).

Definition 1.3. A game v ∈ TUN is called convex if

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T )

for all S ⊆ T ⊆ N\{i}.

Thus for convex games we have that the greater a coalition is, the greater

the marginal contribution is of an individual player joining this coalition. It

is easy to check that the spanning tree game of Example 1.3 is convex.

The next theorem provides three alternative characterizations of convex

game.

Theorem 1.5. [49] Let v ∈ TUN . The following four statements are equiv-
alent:

(i) v is convex.
(ii) for all S, T, U ⊆ N such that S ⊆ T ⊆ N\U

v(S ∪ U)− v(S) ≤ v(T ∪ U)− v(T ).

(iii) for all S, T ⊆ N

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ).

(iv) Core(v) = W (v).
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Condition (ii) in Theorem 1.5 allows for an interpretation of convexity in

terms of increasing marginal contributions of groups of players (instead of just

individuals) when joining larger coalitions.

Condition (iii) is a supermodularity condition from which it immediately fol-

lows that convex games are superadditive. Condition (iv) has many implica-

tions. For every TU-games we know that Core(v) ⊆ W (v). Convex games are

exactly those games for which there is equality. In particular, since W (v) ̸= ∅
for every w ∈ TUN , it follows that the Core of convex game is not empty.

Moreover, for a convex game v the Shapley value is an element of the Core

Core(v). In fact, because Core(v) = W (v) and the Shapley value is the aver-

age of all marginal vectors, the Shapley value corresponds to the barycenter

of the Core for convex games.

Example 1.7. For the game (N, v) of Example 1.4 it is readily verified that
mσ(v) ∈ Core(v) for all σ ∈ Π(N). Hence, by convexity of the Core,

W (v) = Conv{mσ(v)|σ ∈ Π(N)} ⊆ Core(v)

and thus W (v) = Core(v). This means that (N, v) is convex game.

1.3.2 The (pre-)Kernel and the (pre-)Nucleolus

To see how (un)happy a coalition S will be with a payoff vector x in a game

v, we can look at the excess e(S, x) of S with respect to x defined by

e(S, x) = v(S)− x(S).

The smaller e(S, x), the happier S will be with x. Note that x ∈ Core(v) if

and only if e(S, x) ≤ 0 for all S ⊆ N and e(N,x) = 0.

If a payoff vector x has been proposed in the game v, player i can compare

his position with that of player j by considering the maximum surplus sij(x)

of i against j with respect to x, defined by

sij(x) = max
Γij

e(S, x)

where Γij = {S ⊆ 2N |i ∈ S, j ̸∈ S}.
The maximum surplus of i against j with respect to x can be regarded as the
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highest payoff that player i can gain (or the minimal amount that i can lose

if sij(x) is negative) without the cooperation of j. Player i can do this by

forming a coalition without j but with other players who are satisfied with

their payoff according to x. Therefore, sij(s) can be regarded as the weight of

a possible threat of i against j. If x is an imputation then player j can not

be threatened by i or any other player when xj = v({j}) since j can obtain

v({j}) by operating alone. We say that i outweighs j if

xj > v({j}) and sij(x) > sji(x).

The Kernel, introduced by Davis and Maschler in [6], consists of those impu-

tations for which no player outweighs another one.

Definition 1.4. The Kernel κ(v) of a game v is defined by

κ(v) = {x ∈ I(v)|sij(x) ≤ sji(x) or xj = v({j}) for all i, j ∈ N}.

Definition 1.5. The Pre-kernel pκ(v) of a game v is defined by

pκ(v) = {x ∈ Rn|
∑
i∈N

xi = v(N), sij(x) = sji(x) for all i, j ∈ N}.

The Kernel and the Pre-kernel are always non-empty. The Kernel is a

subset of the bargaining set. For superadditive games the Kernel and the

Pre-kernel coincide.

The subsets of the Pre-kernel and Kernel that belong to the Core coincide.

Theorem 1.6. [43] For every game (N, v) it holds

pκ(N, v) ∩ C(N, v) = k(N, v) ∩ C(N, v).

Also we have the following result about the Pre-kernel and Kernel for

convex games.

Theorem 1.7. [44] When (N, v) is convex, then the Pre-kernel pκ(N, v)
coincides with the Kernel K(N, v) and consists of only one point.

Let IN = {v ∈ TUN |I(v) ̸= ∅}. For x, y ∈ Rn we have x ≤L y, i.e. x

is lexicographically smaller than (or equal to) y, if x = y or if there exists

an s ∈ {1, . . . , n} such that xl ≤ yl for all l ∈ {1, 2, . . . , s − 1} and xs < ys.
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Since e(S, x) measures the complaint or dissatisfaction of S with the proposed

imputation x, we can try to find a payoff vector which minimizes the maximum

excess. We construct a vector θ(x) by arranging the excesses of the 2n subsets

of N in decreasing order: θk(x) ≥ θk+1(x) for all k ∈ {1, 2, . . . , 2n − 1}.

Some important properties of the function θ are summarized below.

Lemma 1.1. [21] Let v ∈ IN . Then
(i) for all x ∈ I(v), θ1(x) = 0 ⇔ x ∈ Core(v).
(ii) for all x, y ∈ I(v) such that x ̸= y and θ(x) = θ(y), and for all
α ∈ (0, 1),

θ(αx+ (1− α)y) <L θ(x).

(iii) there exists a unique imputation x ∈ I(v) such that θ(x) ≤L θ(y) for
all y ∈ I(v).

The unique imputation of Lemma 1.1(iii) is called the Nucleolus. For-

mally, for v ∈ IN , the Nucleolus nu(v) is the unique imputation such than

θ(nu(v)) ≤L θ(x) for all x ∈ I(v). The Nucleolus lexicographically minimizes

the maximal excess over all possible imputations. With respect to proper-

ties we note that the Nucleolus satisfies efficiency, symmetry and the dummy

property on IN . Moreover the Nucleolus is relative invariant with respect to

S−quivalence. Interestingly we have

Theorem 1.8. [21] Let v ∈ IN be such that Core(v) ̸= ∅. Then Nu(v) ∈
Core(v).

One distinctive feature of the Nucleolus is the computational complexity.

It is hard to compute the Nucleolus for arbitrary cooperative game but it can

be easier in some special case.

Definition 1.6. A cooperative game (N, v) is said to be 1-convex if v(∅) =
0 and its corresponding gap function gv attains its minimum at the grand
coalition N , i.e., for every coalition S ⊆ N , S ̸= ∅,

0 ≤ gv(N) ≤ gv(S) where gv(S) =
∑
i∈S

bvi − v(S) (1.3.1)

Where gv(S) =
∑

i∈S bvi − v(S) and bvi is the marginal contribution of player
i to coalition N, i.e., bvi = v(N)− v(N\i).
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For 1-convex games, its Nucleolus agrees with the center of gravity of the

Core, of which the extreme points are given by b⃗v − gv(N) · e⃗i, i ∈ N [21].

1.4 Outline of this thesis

The research that forms the basis of this thesis addresses the following general

topics in Cooperative game theory: Why should the players cooperate in coop-

erative game? Once the coalitions are formed, how to distribute the total value

fair and reasonable among all the players? Also, we study the approaches to

determine the distribution solution, such as, Shapley value, Nucleolus, Core,

Pre-kernel. By solving these problems, we will study the properties of the

game model and the value of game.

Chapter 1 contains a short general introduction to the topics of the thesis

and gives an overview of the main results, together with some motivation and

connections to and relationships with older results.

In Chapter 2, we study the so-called information market game involving

n identical firms acquiring a new technology owned by an innovator. For

this specific cooperative game, the Nucleolus is determined through a char-

acterization of the symmetrical part of the Core. The non-emptiness of the

(symmetrical) Core is shown to be equivalent to one of each, super-additivity,

zero-monotonicity, or monotonicity.

In Chapter 3, The Bertrand oligopoly situation with Shubik’s demand func-

tions is modeled as a cooperative TU game. For that purpose two optimization

programs are solved to arrive at the description of the worth of any coalition in

the so-called Bertrand oligopoly game. When the demand’s intercept is small,

this Bertrand oligopoly game is shown to be a type of cost saving games. Un-

der the complementary circumstances, the Bertrand oligopoly game is shown

to be convex and in addition, its Shapley value is fully determined on the basis

of linearity applied to an appealing decomposition of the Bertrand oligopoly

game into the difference between two convex games, besides one non-essential

game.

In Chapter 4, the main goal is to introduce the so-called Service cost

savings games involving n different customers requiring service provided by
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companies. For these specific cooperative games, on one hand, we determine

the Shapley value allocation for these service cost savings games through a

decomposition method for games into one additive game and one Sharing car

pooling cost game, exploiting the linearity of the Shapley value. On the other

hand, we determine the Nucleolus allocation as well, by exploiting fully the

so-called 1-convexity property for these Service cost savings games.

In Chapter 5, we consider 2-convex n person cooperative TU games. The

Nucleolus is determined as some type of constrained equal award rule. Its

proof is based on Maschler, Peleg, and Shapley’s geometrical characterization

for the intersection of the Pre-kernel with the Core. Pairwise bargaining ranges

within the Core are required to be in equilibrium. This system of non-linear

equations is solved and its unique solution agrees with the Nucleolus.

In Chapter 6, the main goal is twofold. Thanks to the so-called indirect

function known as the dual representation of the characteristic function of a

coalitional TU game, we derive a new characterization of the Pre-kernel of the

coalitional game using the evaluation of its indirect function on the tails of

pairwise bargaining ranges arising from a given payoff vector. Secondly, we

study two subclasses of coalitional games of which its indirect function has an

explicit formula and show the applicability of the determination of the Pre-

kernel (Nucleolus) for such types of games using the indirect function. Two

such subclasses of games concern the 1−convex and 2-convex n person games.

In Chapter 7, we illustrate that the so-called indirect function of a co-

operative game in characteristic function form is applicable to determine the

Nucleolus for a subclass of coalitional games called compromise stable TU

games. In accordance with the Fenchel-Moreau theory on conjugate functions,

the indirect function is known as the dual representation of the characteristic

function of the coalitional game. The key feature of compromise stable TU

games is the coincidence of its Core with a box prescribed by certain upper

and lower Core bounds. For the purpose of the determination of the Nucle-

olus, we benefit from the interrelationship between the indirect function and

the Pre-kernel of coalitional TU games. The class of compromise stable TU

games contains the subclasses of clan games, big boss games, 1- and 2-convex

n person TU games. As an adjunct, this chapter reports the indirect function

of clan games for the purpose to determine its Nucleolus.
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In Chapter 8, we model the interaction between soccer teams and their

potential fans as a cooperative cost game based on the annual voluntary spon-

sorships of fans in order to validate their fan registration in a central database,

inspired by the first lustrum of the Club Positioning Matrix (CPM) for pro-

fessional Dutch soccer teams. The game theoretic approach aims to show that

the so-called Nucleolus of the suitably chosen fan data cost game agrees with

the deviations of bi, i ∈ N , from their average, where bi represents the total

budget of sponsorships of fans whose unique favorite soccer team is i.

In chapter 9, The main goal is to reveal the 1-concavity property for a

subclass of cost games called Data Cost Games. Two significantly different

proofs are treated. The motivation for the study of the 1-concavity property

are the appealing theoretical results for both the Core and the Nucleolus, in

particular their geometrical characterization as well as their additivity prop-

erty. The characteristic cost function of the original Data Cost Game assigns

to every coalition the additive cost of reproducing the data the coalition does

not own. The underlying data and cost sharing situation is composed of three

components, namely the player set, the collection of data sets for individuals,

and the additive cost function on the whole data set. The first proof of 1-

concavity is direct, but robust to a suitable generalization of the characteristic

cost function. The second proof of 1-concavity is based on a suitably cho-

sen decomposition of the data cost game which invites to a close comparison

between the Nucleolus and the Shapley cost allocations.

In Chapter 10, the topic is two-fold. Firstly, we prove the convexity of

Owen’s Airport Profit Game (inclusive of revenues and costs). As an ad-

junct, we characterize the class of 1-convex Airport Profit Games by equiva-

lent properties of the corresponding cost function. Secondly, we classify the

class of 1-convex Bankruptcy Games by solving a minimization problem of its

corresponding gap function.



Chapter 2

The Core and Nucleolus in a
model of information
transferal

ABSTRACT - In this chapter, we study the so-called information mar-

ket game involving n identical firms acquiring a new technology owned

by an innovator. For this specific cooperative game, the Nucleolus

is determined through a characterization of the symmetrical part of

the Core. The non-emptiness of the (symmetrical) Core is shown to

be equivalent to one of each, super-additivity, zero-monotonicity, or

monotonicity.

2.1 Introduction of the Information market game

Consider the following problem mentioned in [24]. Besides n firms with identi-

cal characteristics, there exists an agent called the innovator, having relevant

information for the firms. The innovator is not going to use the information

for himself, but this information can be sold to the firms. Any firm that de-

cides to acquire the new information (e.g., a new technology) is supposed to

make use of the information. The n potential users of the information are

the same before and after the innovator offers the new technology. The firms

17
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acquiring the information will be better than before obtaining it, while their

utilities are computed under a conservator point of view, assuming that for

any uninformed firm, the probability of making the right decision can be de-

scribed by a binomial probability distribution, being 0 ≤ p ≤ 1 the uniform

probability of having success. The probability that k among n firms take the

right decision is given by
(
n
k

)
·pk ·(1−p)n−k and hence, the expected aggregated

utility of k firms having success is given by k ·
(
n
k

)
· pk · (1 − p)n−k · uk. Here

uk ≥ 0 represents the utility if k firms make a right decision. Throughout

the chapter, the utility function is monotonically decreasing because when the

number of firms taking the right decision increases, each firm receives a lower

utility level, i.e., uk+1 ≤ uk for all k ≥ 1 (not necessarily normalized in that

u1 = 1).

This information trading problem has been modeled by Galdeano et al. as a

cooperative game (N, v) in characteristic function form, where the set of firms

N = {1, 2, . . . , n + 1} consists of the innovator 1, having a new information,

and the users 2, 3, . . . , n+1, who could be willing to buy the new information.

Throughout the thesis, the size (or cardinality) of any coalition S ⊆ N is

denoted by s, 0 ≤ s ≤ n+ 1. In case coalition S contains the innovator, then

its worth v(S) in the so-called Information market game equals (s − 1) · un
because any member of S, different from the innovator, took the right decision

rewarding the expected utility un since the n− s uninformed firms outside S

are assumed to take right decisions too.

Definition 2.1. [24] The (n+ 1)-person Information market game (N, v) in
characteristic function form is given by v(∅) = 0, and (cf. Galdeano et al.,
2010),

v(S) =


(s− 1) · un, if 1 ∈ S;

fn(s) =
s∑

j=1
j ·

(
s
j

)
· pj · (1− p)s−j · un−s+j , for all S ̸= ∅, 1 ̸∈ S.

(2.1.1)

If the innovator is not a member of coalition S, each one of k successful

users rewards an expected utility the amount of
(
s
k

)
· pk · (1 − p)s−k · un−s+k

by assumption of the uninformed users outside S taking the right decisions.
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Particularly, the Information market game satisfies v({1}) = 0, and v({i}) =
fn(1) = p · un for all i ∈ N , i ̸= 1. Furthermore, v(N) = n · un, v(N\{i}) =
(n− 1) ·un for all i ∈ N , i ̸= 1, whereas v(N\{1}) = fn(n). Consequently, the

marginal contributions bvi = v(N)− v(N\{i}), i ∈ N , are given by bvi = un for

all i ∈ N , i ̸= 1, whereas bv1 = n · un − fn(n). It is left to the reader to verify

v(N)−v(S) =
∑

i∈N\S

[
v(N)−v(N\{i})

]
for all S ⊆ N with 1 ∈ S (2.1.2)

The case p = 1 yields v(S) = s·un for all S ⊆ N\{1} and so, it concerns the

inessential (additive) game corresponding with the vector (0, un, un, . . . , un) ∈
Rn+1. The case p = 0 yields zero worth to all coalitions not containing the

innovator and so, it concerns the so-called big boss game [46] (with the inno-

vator acting as the big boss). We summarize the main result(s) of Galdeano

et al. (2010)

Theorem 2.1. For the (n+1)-person Information market game (N, v) of the
form (2.1.1), the following three statements are equivalent.
(i) Zero-monotonicity, i.e.,

v(S ∪ {i}) ≥ v(S) + v({i}) for all i ∈ N and all S ⊆ N\{i} (2.1.3)

(ii) s · un ≥ fn(s) for all 1 ≤ s ≤ n
(iii) (cf. Galdeano et al. , Theorem 2, page 25)

un
u1

≥ p · (1− p)n−2

1 + p · (1− p)n−2
applied to the normalization u1 = 1 (2.1.4)

Besides their study of zero-monotonicity, Galdeano et al. determine the

Shapley value of the Information market game [24]( Theorem 4, page 27) and

compare the Shapley value with the important outcome [24](Theorem 7, page

29) in the non-cooperative model analyzed by [51]. The main goal of the

current chapter is to determine the Nucleolus of the Information market game

and for that purpose, we explore and characterize the symmetrical part of the

Core, provided non-emptiness of the Core.

2.2 Properties of the Information market game

This section reports properties of the characteristic function for the Informa-

tion market game. In fact, we claim the equivalence of three game properties
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(called super-additivity, zero-monotonicity, and monotonicity). The proof of

their equivalence is based on the monotonically increasing average profit func-

tion for coalitions not containing the innovator, i.e., fn(s)
s ≤ fn(s+1)

s+1 for all

1 ≤ s ≤ n − 1. This significant property has not been discovered before

and allows us to report an equivalence theorem which sharpens the previous

Theorem2.1.

Definition 2.2. Generally speaking, a cooperative game (N, v) in characteris-
tic function form is said to be super-additive, zero-monotonic, and monotonic
respectively if its characteristic function v satisfies v(∅) = 0 and
(i) v(S) + v(T ) ≤ v(S ∪ T ) for all S, T ⊆ N with S ∩ T = ∅. (Super-
additivity)
(ii) v(S) + v({i}) ≤ v(S ∪ {i}) for all i ∈ N and all S ⊆ N\{i}. (Zero-
monotonicity)
(iii) v(S) ≤ v(T ) for all S, T ⊆ N with S ⊆ T . (Monotonicity)

Theorem 2.2. For the (n+1)-person Information market game (N, v) of the
form (2.1.1), the following four statements are equivalent.
(i)Super-additivity
(ii)Zero-monotonicity
(iii)Monotonicity

(iv)fn(n)n ≤ un

Obviously, super-additivity implies zero-monotonicity and in turn, zero-

monotonicity implies monotonicity (for non-negative games). The proof of the

Equivalence Theorem 2.2 will be based on the fundamental lemma concerning

the monotonicity of averaging the profit function fn(s) of the form (2.1.1).

Lemma 2.1. The average function given by fn(s)
s =

s∑
j=1

(
s−1
j−1

)
· pj · (1− p)s−j ·

un−s+j satisfies

(i) fn(s)
s ≤ fn(s+1)

s+1 for all 1 ≤ s ≤ n− 1.
(ii) fn(s+ t) ≥ fn(s) + fn(t) for all 1 ≤ s, t ≤ n− 1 with s+ t ≤ n.

Proof of Lemma 2.1. Let 1 ≤ s ≤ n − 1. Concerning the case s = 1,

note that fn(1) = p ·un as well as fn(2) = 2 ·p · (1−p) ·un−1+2 ·p2 ·un and so,

the inequality fn(2) ≥ 2 · fn(1) holds due to the fact (1− p) · un−1 + p · un ≥
un. Generally speaking, the proof is based on the combinatorial relationship
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(
s

j−1

)
=

(
s−1
j−1

)
+

(
s−1
j−2

)
for all 2 ≤ j ≤ s and proceeds as follows.

fn(s+ 1)

s+ 1
=

s+1∑
j=1

(
s

j−1

)
· pj · (1− p)s+1−j · un−s−1+j = p · (1− p)s · un−s

+ ps+1 · un +

s∑
j=2

[(
s−1
j−1

)
+

(
s−1
j−2

)]
· pj · (1− p)s+1−j · un−s−1+j

= p · (1− p)s · un−s +

s∑
j=2

(
s−1
j−1

)
· pj · (1− p)s+1−j · un−s−1+j

+ ps+1 · un +

s∑
j=2

(
s−1
j−2

)
· pj · (1− p)s+1−j · un−s−1+j

= p · (1− p)s · un−s +

s∑
j=2

(
s−1
j−1

)
· pj · (1− p)s+1−j · un−s−1+j

+ ps+1 · un +
s−1∑
k=1

(
s−1
k−1

)
· pk+1 · (1− p)s−k · un−s+k

=
s∑

j=1

(
s−1
j−1

)
· pj · (1− p)s−j ·

[
(1− p) · un−s−1+j + p · un−s+j

]

≥
s∑

j=1

(
s−1
j−1

)
· pj · (1− p)s−j · un−s+j =

fn(s)
s

where the relevant inequality holds because the monotonically decreasing

sequence (uk)k∈N satisfies (1 − p) · un−s−1+j + p · un−s+j ≥ un−s+j for all

1 ≤ j ≤ s. This proves part (i).

Concerning part (ii), suppose without loss of generality, 1 ≤ s ≤ t ≤ n − 1

with s+ t ≤ n. By applying part (i) twice, we obtain

fn(s+ t) ≥ (s+ t) · fn(t)
t

= fn(t) + s · fn(t)
t

≥ fn(t) + fn(s)

2

Proof of Theorem 2.2. The super-additivity condition for disjoint, non-

empty coalitions S, T ⊆ N\{1} (not containing the innovator 1) reduces to
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fn(s + t) ≥ fn(s) + fn(t), which inequality holds by Lemma 2.1(ii). For

disjoint, non-empty coalitions S, T ⊆ N with 1 ∈ T , 1 ̸∈ S, it holds that

v(S ∪ T )− v(T ) = (s+ t− 1) · un − (t− 1) · un = s · un = v(S ∪ {1}) and so,

the corresponding super-additivity condition reduces to v(S) ≤ v(S ∪ {1}) or
equivalently, fn(s) ≤ s · un for all 1 ≤ s ≤ n. By Lemma 2.1(i), it is necessary

and sufficient that fn(n)
n ≤ un. This proves the equivalence Theorem 2.2(i)

and Theorem 2.2(iv).

The zero-monotonicity condition for coalitions S containing the innovator are

redundant (since un ≥ p · un). Among coalitions S not containing the innova-

tor, the zero-monotonicity condition reduces to either fn(s+1) ≥ fn(s)+fn(1),

which inequality holds by Lemma 2.1(ii), or s · un ≥ fn(s). As before, it is

necessary and sufficient that un ≥ fn(n)
n .

Finally, note that the monotonicity condition requires v(S) ≤ v(S ∪ {1}) for

all S ⊆ N\{1}, S ̸= ∅, or equivalently, fn(s) ≤ s · un for all 1 ≤ s ≤ n. 2

2.3 The Core of the Information market game

Generally speaking, marginal contributions of players are well-known as upper

bounds for pay-offs according to Core allocations, that is xi ≤ v(N)−v(N\{i})
for all i ∈ N and all x ∈ C(N, v). Throughout this chapter, given a pay-off

vector x = (xi)i∈N ∈ Rn+1 and a coalition S ⊆ N , we denote x(S) =
∑

i∈S xi,

where x(∅) = 0. The Core allocations are selected through efficiency and group

rationality. The Core, however, is a set-valued solution concept which fails to

satisfy the symmetry property in that users of the same type(symmetrical

players) receive identical pay-offs according to Core allocations. In order to

determine the single-valued solution concept called Nucleolus [53], being some

symmetrical Core allocation, our main goal is to investigate the symmetrical

part of the Core.

Definition 2.3. The following are the definitions of Core and symmetrical
Core for Information market game.
(i) The Core of Information market game is:

C(N, v) = {x ∈ Rn+1 | x(N) = v(N), x(S) ≥ v(S) for all S ⊆ N} (2.3.1)

(ii) The symmetrical Core allocations require equal pay-offs to users, that is

SymCore(N, v) = {x⃗ = (xi)i∈N ∈ C(N, v) | x2 = x3 = . . . = xn+1} (2.3.2)
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Lemma 2.2. (i) Any game (N, v) with a non-empty Core, C(N, v) ̸= ∅,
satisfies v(N) ≥ v(N\{i}) + v({i}) for all i ∈ N .
(ii) In case p = 1, the Core of the Information market game is a singleton
such that C(N, v) = {(0, un, un, . . . , un)}.
(iii) In case 0 ≤ p < 1, if the Information market game possesses a non-empty
Core, then bv1 ≥ 0, or equivalently, n · un ≥ fn(n).
(iv) If x⃗ = (xi)i∈N satisfies x⃗(N) = v(N) as well as xi ≤ v(N)−v(N\{i}) for
all i ∈ N , i ̸= 1, then the Core constraints x⃗(S) ≥ v(S) are redundant for all
coalitions S ⊆ N with 1 ∈ S.

Proof. (i) Choose x⃗ ∈ C(N, v), if Core is non-empty. Clearly, by (2.3.1),

for all i ∈ N ,

v(N) = x⃗(N) = x⃗(N\{i}) + xi ≥ v(N\{i}) + xi ≥ v(N\{i}) + v({i})

(ii) In case p = 1, then the Core-constraints v({i}) ≤ xi ≤ v(N) − v(N\{i})
reduce to p · un ≤ xi ≤ un and so, xi = un for all x⃗ ∈ C(N, v), and all

i ∈ N , i ̸= 1. Consequently, by efficiency, x1 = 0. The resulting vector

(0, un, un, . . . , un) does indeed satisfy all the Core constraints.

(iii) In case 0 ≤ p < 1, apply part (i) to the Information market game to con-

clude that bv1 = v(N)−v(N\{1}) ≥ v({1}) = 0 and so, bv1 ≥ 0, or equivalently,

n · un ≥ fn(n).

(iv) Under the given circumstances, 1 ∈ S, together with (2.1.2), we derive

the following:

x⃗(S) = v(N)− x⃗(N\S) ≥ v(N)−
∑

i∈N\S

[
v(N)− v(N\{i})

]
= v(S)

2

Theorem 2.3. For the (n+1)-person Information market game (N, v) of the
form (2.1.1) with 0 ≤ p < 1, the following five statements are equivalent.
(i) The Core is non-empty, C(N, v) ̸= ∅
(ii) The symmetrical Core is non-empty, SymCore(N, v) ̸= ∅
(iii) bv1 ≥ 0

(iv) fn(n)
n ≤ un

(v) The game fulfills one of the following properties: super-additivity, zero-
monotonicity, monotonicity.



The Core and Nucleolus in a model of information transferal 24

Proof. The implication (i) =⇒ (iii) is due to Lemma 2.2(iii). Notice the

equivalences (iii) ⇐⇒ (iv) as well as (iv) ⇐⇒ (v). The implication (ii) =⇒ (i)

is trivial. It remains to show the implication (iv) =⇒ (ii), the proof of which

will be postponed till Section 2.4(see 2.1(i)). 2

Remark 2.1. The condition fn(n)
n ≤ un is equivalent to gn(p) ≤ gn(1) where

the function gn : [0, 1] → R is defined by

gn(p) = p ·
n−1∑
k=0

(
n−1
k

)
· pk · (1− p)n−1−k · uk+1 for all 0 ≤ p ≤ 1. (2.3.3)

Note that p is treated as a variable and that the function satisfies gn(1) =

un. It is known that any function of the form g(p) = pa · (1 − p)b is mono-

tonically increasing on the interval [0, a
a+b ] and monotonically decreasing on

the interval [ a
a+b , 1] such that its maximum is attained by p = a

a+b at level

g( a
a+b) =

aa·bb
(a+b)a+b . In our framework, the function gn(p) is composed as the

sum of n functions, each of one is monotonically increasing on the subinterval

[0, k+1
n ] and monotonically decreasing on the sub-interval [k+1

n , 1] such that its

maximum value equals (k+1)k+1·(n−1−k)(n−1−k)

nn . On the final interval [n−1
n , 1]

all the components are monotonically decreasing, except for the very last com-

ponent given by un · pn. Further investigation about the graph of the function

gn(p) is desirable.

2.4 The Nucleolus of the Information market game

A direct consequence of Lemma 2.2(iv) and Lemma 2.1(i) is the following

characterization of the symmetrical part of the Core.

Corollary 2.1. For the Information market game,
(i) A symmetrical pay-off vector of the form x⃗(α) = (n ·(un−α), α, α, . . . , α) ∈
Rn+1 is a Core allocation if and only if α ≤ un and s · α ≥ fn(s) for all
1 ≤ s ≤ n, or equivalently,

fn(s)

s
≤ α ≤ un where

fn(s)

s
=

s∑
j=1

(
s−1
j−1

)
·pj ·(1−p)s−j ·un−s+j (2.4.1)

(ii) A symmetrical pay-off vector

(n·(un−α), α, α, . . . , α) ∈ SymCore(N, v) if and only if
fn(n)

n
≤ α ≤ un
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(2.4.2)

where fn(n)
n =

n∑
j=1

(
n−1
j−1

)
· pj · (1 − p)n−j · uj = p ·

n−1∑
k=0

(
n−1
k

)
· pk · (1 −

p)n−1−k · uk+1

Definition 2.4. Recall the definitions of excess, Nucleolus and surplus which
have been defined in Chapter 1.
(i) Define the excess of coalition S ⊆ N , S ̸= ∅, at pay-off vector x⃗ in any
cooperative game (N, v) by ev(S, x⃗) = v(S)−x⃗(S). Notice that all the excesses
of coalitions at Core allocations are non-positive.
(ii) The excess vector θ(x⃗) ∈ R2n−1 at pay-off vector x⃗ in any n-person game
(N, v) has as its coordinates the excesses ev(S, x⃗), S ⊆ N , S ̸= ∅, arranged in
non-increasing order.
(iii) The Nucleolus [53] of a cooperative game (N, v) is the unique pay-off vec-
tor y⃗ of which the excess vector θ(y⃗) satisfies the lexicographic order θ(y⃗) ≤L

θ(x⃗) for any pay-off vector x⃗ satisfying efficiency and individual rationality
(i.e., x⃗(N) = v(N) and xi ≥ v({i}) for all i ∈ N).
(iv) The surplus svij(x⃗) of a player i ∈ N over another player j ∈ N at pay-off
vector x⃗ in any cooperative game (N, v) is given by the maximal excess among
coalitions containing player i, but not containing player j. That is,

svij(x⃗) = max

[
ev(S, x⃗) | S ⊆ N, i ∈ S, j ̸∈ S

]
(2.4.3)

For the purpose of the determination of the Nucleolus of the Information

market game, the next lemma reports about the maximal excess levels at sym-

metrical pay-off vectors x⃗(α) = (n · (un − α), α, α, . . . , α) ∈ Rn+1

Lemma 2.3. For the (n + 1)-person Information market game (N, v) of the
form (2.1.1) it holds:
(i) ev(S, x⃗(α)) = −(n+ 1− s) · (un − α) for all S ⊆ N with 1 ∈ S. In case
α ≤ un, then the maximal excess among nontrivial coalitions containing player
1 equals α− un attained at n-person coalitions of the form N\{i}, i ̸= 1.
(ii) ev(S, x⃗(α)) = fn(s) − s · α for all S ⊆ N , S ̸= ∅, with 1 ̸∈ S. In case
fn(n)
n ≤ α, there is no general conclusion about the maximal excess among

coalitions not containing player 1.
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Proof (i) For all S ⊆ N with 1 ∈ S it holds

ev(S, x⃗(α)) = v(S)− x⃗(α)(S) = (s− 1) · un −
[
n · un − n · α+ (s− 1) · α

]
= −(n+ 1− s) · (un − α)

Under the additional assumption α ≤ un, we obtain −(n+ 1− s) · (un − α) ≤
−(un−α), that is the maximum is attained for n-person coalitions of the form

N\{i}, i ̸= 1, (provided S ̸= N). On the other, for all S ⊆ N , S ̸= ∅, with
1 ̸∈ S, it holds ev(S, x⃗(α)) = v(S)− x⃗(α)(S) = fn(s)− s · α. 2

Theorem 2.4. Suppose that the symmetrical Core of the (n + 1)-person In-

formation market game is non-empty, that is un ≥ fn(n)
n . Let 1 ≤ t ≤ n be a

maximizer in that

fn(t) + un
t+ 1

≥ fn(s) + un
s+ 1

for all 1 ≤ s ≤ n. (2.4.4)

Let ᾱ = fn(t)+un

t+1 and x⃗(ᾱ) = (n · (un − ᾱ), ᾱ, ᾱ, . . . , ᾱ) ∈ Rn+1.

(i) Then the pay-off vector x⃗(ᾱ) belongs to the symmetrical Core in that fn(n)
n ≤

ᾱ ≤ un.
(ii) The Nucleolus of the (n+1)-person Information market game equals x⃗(ᾱ).

Proof. Suppose n · un ≥ fn(n). The following equivalences hold:

ᾱ ≤ un iff
fn(t) + un

t+ 1
≤ un iff fn(t) ≤ t · un iff

fn(t)

t
≤ un

By Lemma 2.1(i), the latter inequality holds since fn(t)
t ≤ fn(n)

n ≤ un. So, on

the one hand, ᾱ ≤ un. On the other, from (2.4.4) applied to s = n as well as

the assumption un ≥ fn(n)
n , it follows:

ᾱ =
fn(t) + un

t+ 1
≥ fn(n) + un

n+ 1
≥

fn(n) +
fn(n)
n

n+ 1
=

fn(n)

n
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(ii) From part (i) and Lemma 2.3(i), on the one hand, we derive the following:

sv12(x⃗(ᾱ)) = max

[
ev(S, x⃗(ᾱ)) | S ⊆ N, 1 ∈ S, 2 ̸∈ S

]

= max

[
−(n+ 1− s) · (un − ᾱ) | 1 ≤ s ≤ n

]
= −(un − ᾱ) and on the other

sv21(x⃗(ᾱ)) = max

[
ev(S, x⃗(ᾱ)) | S ⊆ N, 2 ∈ S, 1 ̸∈ S

]

= max

[
fn(s)− s · ᾱ | 1 ≤ s ≤ n

]
= ᾱ− un

where the latter equality is due to the choice of ᾱ. The equality sv12(y⃗) = sv21(y⃗)

for y⃗ = x⃗(ᾱ) suffices to conclude that the Nucleolus is given by x⃗(ᾱ). 2

Notice that −sv12(x⃗(ᾱ)) = un − ᾱ represents the maximal bargaining range

within the Core by transferring money from player 1 to player 2 starting at

Core allocation x⃗(ᾱ) while remaining in the Core. By Lemma 2.2(iv), recall

the redundancy of Core constraints induced by coalitions containing player 1,

so no lower bound for Core allocations to player 1.

If the worth of any coalition not containing player 1 is zero (for instance, the

big boss games), that is fn(s) = 0 for all 1 ≤ s ≤ n, then Theorem 2.4 applies

with t = 1, ᾱ = un
2 , yielding the Nucleolus to simplify to un

2 · (n, 1, 1, . . . , 1).
Thus, the Nucleolus pay-off to the big boss equals the aggregate pay-off to all

the users.

Remark 2.2. Concerning the case t = n.
Recall that bv1 = n · un − fn(n) as well as b

v
i = un for all i ∈ N , i ̸= 1. Thus,

the case t = n yields ᾱ = fn(n)+un

n+1 = un − bv1
n+1 = bvi − bv1

n+1 for all i ∈ N ,
i ̸= 1. In words, in this setting, the Nucleolus coincides with the center of
gravity of n+ 1 vectors given by b⃗v − β · e⃗i, i ∈ N . Here β = bv1 and e⃗i is the
i-th standard vector in Rn+1. Note that, for any 1 ≤ s ≤ n, the underlying
condition fn(n)+un

n+1 ≥ fn(s)+un

s+1 may be rewritten as

s · fn(n)− n · fn(s) +
[
fn(n)− fn(s)

]
≥ (n− s) · un (2.4.5)
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Remark 2.3. Inspired by the description of the Nucleolus as given in Remark
2.2, we review a specific subclass of cooperative games with a similar conclu-
sion concerning the Nucleolus.

The (n+1)-person Information market game satisfies bvi = un for all i ∈ N ,
i ̸= 1, and so, its gap function gv is given by gv(S) = bv1 = n · un − fn(n) for
all S ⊆ N with 1 ∈ S and gv(S) = s · un − fn(s) otherwise. Consequently, the
(n+1)-person Information market game of the form (2.1.1) satisfies 1-convexity

if and only if any slope ∆(fn)(s) =
fn(n)−fn(s)

n−s , 1 ≤ s ≤ n−1, is bounded from
below by the utility un in that ∆(fn)(s) ≥ un, together with ∆(fn)(0) ≤ un
(provided fn(0) = 0). Observe that the latter condition, together with Lemma
2.1(i), imply the validity of (2.4.5) with reference to the case t = n of Theorem
2.4. To conclude, the 1-convexity property for (n + 1)-person Information
market games is part of the case t = n and the current procedure for the
determination of the Nucleolus agrees with the known approach being the
center of gravity of the non-empty Core.

Remark 2.4. A cooperative game (N, v) is said to be 2-convex [21] if v(∅) = 0
and its corresponding gap function gv satisfies

gv(N) ≤ gv(S) for all S ⊆ N with s ≥ 2 and (2.4.6)

gv({i}) ≤ gv(N) ≤ gv({i}) + gv({j}) for all i, j ∈ N , i ̸= j(2.4.7)

Recall gv(N) = gv({1}) = bv1 and gv({i}) = (1− p) · un for all i ̸= 1. Together
with bv1 = n · un − fn(n), it follows that (2.4.7) reduces to (1− p) · un ≤ bv1 ≤
2 · (1− p) · un or equivalently,

(n− 2 + 2 · p) · un ≤ fn(n) ≤ (n− 1 + p) · un (2.4.8)

Consequently, the (n+1)-person Information market game satisfies 2-convexity
if and only if (2.4.8) holds as well as any slope ∆(fn)(s), 2 ≤ s ≤ n − 1, is
bounded from below by un. Particularly, (2.4.5) holds for all 2 ≤ s ≤ n − 1.
Finally, it is left to the reader to derive from (2.4.8) the relevant inequality
involving s = 1. That is,

fn(n) + un
n+ 1

≥ fn(1) + un
2

provided n ≥ 3 and 0 ≤ p < 1, where fn(1) = p · un

In summary, in the setting of Theorem 2.4, the case t = n applies to (n+ 1)-
person Information market games which are 2-convex. Particularly, the cur-
rent procedure for the determination of the Nucleolus agrees with the known
approach valid for 2-convex games [16].
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Next we will give one three person Information market game to show how

the Core and Nucleolus of this kind of game look like.

Example 2.1. The three-person Information market game (N, v) (with n = 2)
is given as follows:

Coalition S {1} {2} {3} {1,2}{1,3}{2,3}{1,2,3}

Worth v(S) 0 p · u2 p · u2 u2 u2 f2(2) 2 · u2
Gap gv(S) bv1 (1− p) · u2 (1− p) · u2 bv1 bv1 bv1 bv1

Note that bvi = u2 for i = 2, 3, as well as bv1 = 2 · u2 − f2(2), where

f2(2) = 2 · p ·
[
p · u2 + (1− p) · u1

]
. Here bv1 ≥ 0 is a necessary and sufficient

condition for non-emptiness of the Core. The three-person Information market

game is 1-convex if, besides bv1 ≥ 0, one of the following equivalences hold:

(i) bv1 ≤ (1− p) · u2
(ii) u2

u1
≤ 2·p

2·p+1

(iii) p ≥ A
2 where A = u2

u1−u2

Its Core is described by the constraints x1+x2+x3 = 2·u2, and p·u2 ≤ xi ≤ u2
for i = 2, 3, as well as 0 ≤ x1 ≤ bv1. The constraint x1 ≥ 0 is redundant,

while the constraint bv1 ≥ 0 is a necessary and sufficient condition for non-

emptiness of the Core. We distinguish two cases concerning the Core structure,

depending on the location of the Core constraint x1 = bv1 with respect to the

parallel line x1 = (1 − p) · u2. In case bv1 ≤ (1 − p) · u2, then the Core is a

triangle with three vertices (0, u2, u2), (b
v
1, u2 − bv1, u2) and (bv1, u2, u2 − bv1),

representing the Core of a 1-convex three-person game. Its Nucleolus is given

by the center of the Core, that is (bv1, u2, u2)−
bv1
3 · (1, 1, 1).

In case bv1 > (1−p)·u2, then the Core has five vertices u2·(0, 1, 1), u2·(1−p, 1, p),

u2 · (1 − p, p, 1), (bv1, p · u2, (2 − p) · u2 − bv1), and (bv1, (2 − p) · u2 − bv1, p ·
u2) representing the Core of a convex three-person game (with respect to its

imputation set).

Concerning the condition (2.4.4), the following equivalences hold (provided

0 ≤ p < 1):

(i) f2(2)+u2

3 ≥ f2(1)+u2

2

(ii) u2
u1

≤ 4·p
4·p+1
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(iii) p ≥ A
4 , where A = u2

u1−u2
.

According to the main Theorem 2.4, to conclude with, if p ≤ A
4 , then t = 1,

ᾱ = f2(1)+u2

2 = u2
2 + p·u2

2 and hence, the parametric representation of the

Nucleolus is given by (u2,
u2
2 , u2

2 ) + u2
2 · (−2 · p, p, p).

If p ≥ A
4 , then t = 2, ᾱ = f2(2)+u2

3 = u2 − bv1
3 and hence, the parametric

representation of the Nucleolus is given by (0, u2, u2)− 1
3 · (−2 · bv1, bv1, bv1).

If p varies upwards from zero till A
4 , then the Nucleolus starts at (u2,

u2
2 , u2

2 )

and moves with a speed scaled by u2
2 . If p varies downwards from 1 till

A
4 , then the Nucleolus starts at (0, u2, u2) and moves with a speed scaled by

bv1 = 2·(1−p)·
[
(1+p)·u2−p·u1

]
. Anyhow, the Nucleolus moves by two different

speeds from (0, u2, u2) being the full Core if p = 1 till (u2,
u2
2 , u2

2 ), being the

center of the Core if p = 0 with four vertices (2 ·u2, 0, 0), (u2, u2, 0),(u2, 0, u2),
and (0, u2, u2).

2.5 The Shapley value of the Information market
game

Next, we will give an simply approach to determine the Shaply value of the

Information market game, comparing the approach given in [24].

Theorem 2.5. The Shapley value Sh1(N, v) of the innovator in the (n+ 1)-
person Information market game (N, v) equals the difference between one half
of the aggregate pay-off and the average worth of coalitions not containing the
innovator, that is

Sh1(N, v) =
n · un
2

− 1

n+ 1

n∑
s=0

fn(s) and for all i ̸= 1, (2.5.1)

Shi(N, v) =
un
2

+
1

n · (n+ 1)
·

n∑
s=0

fn(s) (2.5.2)
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Proof. Put fn(0) = 0. Using its classical formula [56], the Shapley value

of the innovator 1 is determined as following:

Sh1(N, v) =
∑

S⊆N\{1}

s! · (n− s)!

(n+ 1)!
·
[
v(S ∪ {1})− v(S)

]

=
∑

S⊆N\{1}

s! · (n− s)!

(n+ 1)!
· v(S ∪ {1})−

∑
S⊆N\{1}

s! · (n− s)!

(n+ 1)!
· v(S)

=
∑

S⊆N\{1}

s! · (n− s)!

(n+ 1)!
· s · un −

∑
S⊆N\{1}

s! · (n− s)!

(n+ 1)!
· fn(s)

=

n∑
s=0

(
n
s

)
· s!·(n−s)!

(n+1)! · s · un −
n∑

s=0

(
n
s

)
· s!·(n−s)!

(n+1)! · fn(s)

=

n∑
s=0

s

n+ 1
· un −

n∑
s=0

fn(s)

n+ 1
=

n · un
2

− 1

n+ 1
·

n∑
s=0

fn(s)

2

Remark 2.5. The Shapley value Sh(N, v) is a symmetric allocation which
verifies the upper Core bound un.

Indeed, by Lemma 2.2(i), it holds fn(n)
n ≥ fn(s)

s for all 1 ≤ s ≤ n and so,

1

n · (n+ 1)
·

n∑
s=0

fn(s) ≤
1

n · (n+ 1)
· fn(n)

n
·

n∑
s=0

s =
fn(n)

2 · n
≤ un

2

where the last inequality is due to the assumption fn(n) ≤ n · un. Thus,

Shi(N, v) ≤ un for all i ∈ N , i ̸= 1, whereas the Shapley value for users does

not necessarily meet the lower Core bound fn(n)
n . For instance, for the three-

person Information market game (with n = 2 and 0 ≤ p < 1), the following

equivalences hold:

Sh2(N, v) ≥ f2(2)

2
⇐⇒ u2

u1
≥ 4 · p

4 · p+ 3
⇐⇒ p ≤ 3

4
·A

where A = u2
u1−u2

. By the super-additivity (or zero-monotonicity) of the Infor-

mation market game, its Shapley value satisfies individual rationality, that is
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Shi(N, v) ≥ v({i}) for all i ∈ N . To conclude, the Shapley value of the Infor-

mation market game is an imputation, but not necessarily a Core allocation

(in spite of the validity of the upper Core bound for users).



Chapter 3

Convexity and the Shapley
value in Bertrand Oligopoly
TU-games with Shubik’s
Demand Functions

ABSTRACT - In this chapter, The Bertrand oligopoly situation with

Shubik’s demand functions is modeled as a cooperative TU game. For

that purpose two optimization programs are solved to arrive at the

description of the worth of any coalition in the so-called Bertrand

oligopoly game. When the demand’s intercept is small, this Bertrand

oligopoly game is shown to be a type of cost saving games. Under the

complementary circumstances, the Bertrand oligopoly game is shown

to be convex and in addition, its Shapley value is fully determined

on the basis of linearity applied to an appealing decomposition of the

Bertrand oligopoly game into the difference between two convex games,

besides one non-essential game.

33
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3.1 Introduction

A central problem in oligopoly theory is the existence of collusive behaviors

between firms, that is, situations in which firms are able to coordinate and

to stabilize their strategies in order to increase their profits. The classical

Cournot and Bertrand Oligopoly situations are such examples where firms are

better off through cooperation rather than by acting independently. A cartel

operating successfully is the OPEC (Organization of the Petroleum Exporting

Countries) cartel which restricts oil supply in order to control the oil price

market. Another example of a cartel which had operated is the agreement

between multinational firms Saint-Gobain, Pilkington, Asahi and Soliver in

the flat glass industry. Their illegal agreement on the price of glass in the car

industry from 1998 to 2003 had been fined by the European Commission in

2008.

Non-cooperative game theory has provided the theoretical bases for the exis-

tence of collusive behaviors between firms by means of repeated games. Under

this first approach, each firm does not have any interest in defecting from the

collusive behavior because it rationally anticipates future punishments in the

periods following its defection. An alternative way to formalize the existence

of collusive behaviors comes from Cooperative game theory. Under this sec-

ond approach, firms are allowed to sign binding agreements in order to form

cartels called coalitions. With such an assumption cooperative games called

oligopoly TU (Transferable Utility)-games can be defined and the existence of

collusive behaviors is then related to the non-emptiness of the Core of such

games. Aumann(1959) [2] proposes two different models in order to define

the cooperative game: according to the first, every cartel computes the total

profit which it can guarantee itself regardless of what outsiders do; the sec-

ond computes the minimal profit for which outsiders can prevent the firms in

the cartel from getting more. These two models lead to consider the α and

β-characteristic function forms respectively.

In this chapter, we follow this cooperative approach to analyze collu-

sive behaviors and we study a subclass of oligopoly TU-games in α and β-

characteristic function forms. Many works have studied the Core of oligopoly

TU-games. As regards Cournot oligopoly TU-games with or without transfer-

able technologies, Zhao (1999) [58] [59] shows that the α and β-characteristic
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function forms lead to the same class of Cournot oligopoly TU-games. When

technologies are transferable, Zhao(1999) [58] provides a necessary and suffi-

cient condition to establish the convexity property in case the inverse demand

function and cost functions are linear. Although oligopoly games may fail to

be convex in general, Norde et al.(2002) [47] show they are nevertheless totally

balanced. When technologies are not transferable, Zhao(1999) [59] proves that

the Core of such oligopoly games is non-empty if every individual profit func-

tion is continuous and concave. Furthermore, Norde et al.(2002) [47] show that

these games are convex in case the inverse demand function and cost functions

are linear, and Driessen and Meinhardt(2005,2010) [19] [16] provide econom-

ically meaningful sufficient conditions to guarantee the convexity property in

a more general case.

As regards Bertrand oligopoly TU-games, Deneckere and Davidson (1985)

[9] consider a Bertrand oligopoly situation with differentiated products in

which the demand system is Shubik’s (1980) [57] and firms operate at a con-

stant and identical marginal and average cost. They prove that these games

have a superadditive property in the sense that a merger of two disjoint cartels

results in a joint after-merger profit for them which is greater than the sum of

their pre-merger profits. Lardon(2010) [36] extends this result by considering

the α and β-characteristic functions of these games. As for Cournot oligopoly

TU-games, he shows that the α and β-characteristic function forms lead to

the same class of Bertrand oligopoly TU-games and proves that the convexity

property holds for this class of games.

In this chapter, we deal with the study of Bertrand oligopoly TU-games in

α and β-characteristic function forms with Shubik’s demand functions in which

firms have possibly distinct marginal costs for all firms. In section 3.2 two

subsequent optimization programs are solved to determine the worth of any

coalition according to the characteristic function of the cooperative Bertrand

Oligopoly TU-game. As a corollary, it is shown in the introductory Section 3.2

that the α and β approach lead to the same class of Bertrand Oligopoly-TU

games. This first result should be interpreted as an extension of Lardon’s result

[36] which applied only for the case with identical marginal costs. Particularly,

we distinguish two types of coalitions in Bertrand oligopoly TU-games. On the

one hand, if the intercept of demand is sufficiently small, then the Bertrand

oligopoly TU-games share clear similarities with a type of cost savings game.
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Section 3.3 states, if the intercept of demand is sufficiently large, then Bertrand

oligopoly TU-games are convex. In addition, in Section 3.4, the well-known

game theoretic solution called Shapley value is fully determined on the basis

of linearity applied to a decomposition of Bertrand oligopoly TU- games into

the difference between two convex games, besides one non-essential game.

Concluding remarks are presented in the Section 3.5.

3.2 The non-symmetric Bertrand Oligopoly TU Game
with Shubik’s Demand Functions

In [57] Bertrand oligopoly situation is described by a 3-tuple (N, (Di)i∈N , (Ci)i∈N ),

where N = {1, 2, . . . , n} is the finite set of firms, such that, for every firm

i ∈ N , the Shubik’s demand function Di : Rn
+ → R and the (linear) cost

function Ci : R+ → R+ with marginal cost ci ≥ 0 respectively are given by

Di(p1, p2, . . . , pn) = V − pi − r ·
[
pi − 1

n ·
∑
k∈N

pk

]
(3.2.1)

and Ci(x) = ci · x for all x ∈ R+ where pi is the price charged by firm i,

the demand’s intercept V ≥ 0 when all prices are zero, and let r > 0 be the

substitutability parameter. When r approaches zero, products become unre-

lated, and when r approaches infinity, products become perfect substitutes.

The quantity demanded of firm i’s brand depends on its own price pi and the

difference between its own price and the average price in the industry. The

latter quantity is decreasing with respect to its own price pi and increasing

with respect to any price pj , j ̸= i. Notice that firms may operate at possibly

different marginal costs ci ≥ 0, i ∈ N , and these marginal costs do not limit

the non-negative prices pi ≥ 0, i ∈ N , of firms. The corresponding Bertrand

oligopoly game in normal form (N, (Xi)i∈N , (πi)i∈N ) is given by player i’s strat-

egy set Xi = R+ = [0,∞) and individual profit function πi : Πk∈NXk → R

such that

πi(p1, p2, . . . , pn) = (pi − ci) ·Di(p1, p2, . . . , pn)
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So, for all i ∈ N ,

πi(p1, p2, . . . , pn) = (pi − ci) ·
[
V − (1 + r) · pi + r

n ·
∑
k∈N

pk

]
(3.2.2)

Denote for any T ⊆ N , T ̸= ∅, the coalitional strategy set XT = Πk∈TXk and

define the coalitional profit function πT : XT ×XN\T → R by πT (pT , pN\T ) =∑
k∈T

πk(pT , pN\T ), for all (pT , pN\T ) ∈ XT×XN\T . The corresponding Bertrand

oligopoly game in α- and β-characteristic function form (N, vα) and (N, vβ)

are defined, for every coalition S ⊆ N , S ̸= ∅, as follows:

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS , pN\S) (3.2.3)

vβ(S) = min
pN\S∈XN\S

max
pS∈XS

πS(pS , pN\S) (3.2.4)

πS(pS , pN\S) =
∑
j∈S

(pj − cj) ·
[
V − (1 + r) · pj + r

n ·
∑
k∈N

pk

]
(3.2.5)

Generally speaking, it is known that the game in β-characteristic function

form majorizes the α-characteristic function form, i.e., vβ(S) ≥ vα(S) for all

S ⊆ N , and particularly, both games do not differ for the grand coalition

N , i.e., vβ(N) = vα(N) because it concerns only the maximization program

(instead of two subsequent optimization programs). As a matter of fact, it

turns out that according to the (unique) optimal solution of this maximization

problem in the Bertrand oligopoly situation, each firm i ∈ N charges the price

amounting the average of its marginal cost ci and the demand’s intercept

V , and so, the coalitional profit function πN ((pi)i∈N ) attains its maximum

whenever pi =
V+ci

2 for all firms i ∈ N , its profits amounting as follows (see

Theorem 3.2):

vβ(N) = πN ((V+ci
2 )i∈N ) = n

4 ·
[
V − c̄N

]2
+ 1+r

4 ·
[ ∑
j∈N

(cj)
2−n ·(c̄N )2

]
(3.2.6)

Through the remainder, for any S ⊆ N , S ̸= ∅, let c̄S = 1
s ·

∑
j∈S cj denote

the average cost of S. The production technology of any firm i is influenced
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by its marginal cost ci in the sense that firms with a small (large respectively)

marginal cost possess a high (low respectively) production technology. Because

firms are confronted with very different marginal costs, there exist significant

productivity gains inside any coalition such that any firm in the coalition S

with a low production technology benefits from the high production technology

of other firms in S. In this setting, it is natural to replace the marginal

costs of individual firms in the non-cooperative framework by the average

cost of the coalition in the cooperative framework. Henceforth, the expression∑
j∈N (cj)

2 − n · (c̄N )2 represents the (non-negative) cost savings of the grand

coalition N , taking into account that the quadratic utility function u(x) = x2

applies. Besides this type of cost savings, the quadratic utility form of the

netto demand V − c̄N is added to determine the worth vβ(N) of the grand

coalition N .

For strict subcoalitions S ⊆ N , S ̸= N , its worth vβ(S) is composed of two

contributions, namely a similar type of cost savings, and a critical type of netto

demand, under the restriction that the firms in S charge the only non-zero, but

common price p, amounting Di((p)j∈S , (0)j∈N\S) = V − p · h(s). Particularly,
if the common price equals the average cost of coalition S, then the critical

netto demand equals V − c̄S · h(s), of which the quadratic utility applies only

if the critical netto demand itself is non-negative. Here the decreasing linear

function h : R → R with slope −r
n is defined by h(x) = 1 + r − r

n · x for all

x ∈ R, satisfying h(0) = 1 + r and h(n) = 1.

The mathematical description of the Bertrand Oligopoly game is presented in

the next Theorem 3.1. Its proof is rather lengthy containing four parts and

so, it will be postponed till the Theorem 3.2. Further, interpretations of the

solutions of the two subsequent optimization programs are given in Theorem

3.2. Moreover, the very last part of the proof ends with the alternative but

equivalent formula of the form (3.2.14) for the worth vβ(S) of coalition S in

the Bertrand oligopoly game.

Theorem 3.1. Let S ⊆ N , S ̸= N , S ̸= ∅. Whether or not the critical
demand V −h(s) · c̄S is feasible, the worth vβ(S) of coalition S in the Bertrand
oligopoly game is as following:

vβ(S) =
s

4·h(s) ·
[
V −h(s)·c̄S

]2
+ 1+r

4 ·
[∑
j∈S

(cj)
2−s·(c̄S)2

]
if V > h(s) · c̄S;

(3.2.7)
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vβ(S) =
1+r
4 ·

[∑
j∈S

(cj)
2 − s · (c̄S)2

]
if V ≤ h(s) · c̄S. (3.2.8)

Corollary 3.1. Consider the symmetric Bertrand oligopoly situation with
common marginal costs, i.e., ci = c > 0 for all i ∈ N . Then the game
(N, vβ) in β-characteristic function form satisfies vβ(N) = n

4 · (V − c)2 and
for all S ⊆ N , S ̸= N , S ̸= ∅, the following holds.
(i) vβ(S) = 0 whenever the demand’s intercept V is small enough, i.e., if
V ≤ c · h(s).
(ii) If the demand’s intercept V is large enough, i.e., if V > c · h(s), then

vβ(S) =
s

4·h(s) ·
[
V−c·h(s)

]2
= s

h(s) ·(
c·r
2·n)

2·
[
E−(n−s)

]2
provided E > n− s,

where the proportionally aggregate netto demand E is defined by E = n·(V−c)
c·r .

The non-zero coalitional worth in the symmetric Bertrand oligopoly Game

depends on the validity of the constraint V > c · h(s) involving the demand’s

intercept V or the equivalent constraint E > n−s involving the proportionally

aggregate netto demand E. In this setting, we interpret n · (V − c) as the

aggregate netto demand when prices are zero.

Obviously, if a coalition S of size s meets the constraint E ≤ n − s yielding

zero worth vβ(S) = 0, then any coalition of the same size s or less inherits

the same constraint yielding zero worth. Similarly, if a coalition T of size t

meets the inverse constraint E > n − t yielding non-zero worth vβ(T ) > 0,

then any coalition of the same size or more inherits the same inverse constraint

yielding non-zero worth. In case the demand’s intercept V is large enough,

then the coalitional worth in the non-symmetric Bertrand oligopoly Game

counts, besides the cost savings, the non-zero worth in the symmetric Bertrand

oligopoly game, with the understanding that the constant marginal cost is to

be replaced by the average coalitional cost.

According to the very last formula, the per-capita worth
vβ(S)

s is strategically

equivalent to the quotient of the square of a bankruptcy game (with estate E

and unitary claims) and a linearly decreasing symmetric game (varying from

levels 1 + r down to level 1).

Corollary 3.2. The α- and β-characteristic function forms (N, vα) and (N, vβ)
coincide, that is vα(S) = vβ(S) for all S ⊆ N .
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Proof. Fix the coalition S $ N , S ̸= ∅. It remains to prove the inequality

vα(S) ≥ vβ(S). We claim the following chain of (in)equalities:

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS , pN\S)

≥ min
pN\S∈XN\S

πS((p̄
S
j )j∈S , pN\S)

= πS((p̄
S
j )j∈S , p̄N\S) = vβ(S)

As shown in Theorem 3.2, the last equality holds because of the construction of

both vectors (p̄Sj )j∈S and p̄N\S . The last equality but one holds because p̄N\S
is a minimizer of the minimization program min

pN\S∈XN\S
πS((p̄

S
j )j∈S , pN\S). 2

Theorem 3.2. Let S ⊆ N , S ̸= N , S ̸= ∅.
Solving the minimization program for N\S at the second stage causes the
critical demand V − h(s) · c̄S, where c̄S is the average cost of coalition S and
the linearly decreasing function defined by h(x) = 1 + r − r·x

n for all x ∈ R.
(i) If the critical demand is not feasible (i.e., if the demand’s intercept V is
small enough), then according to the (unique) solution of the maximization
program at the first stage, each firm i ∈ S charges the price amounting the
midpoint of its marginal cost ci and the average cost c̄S, and the coalitional
worth vβ(S) equals the cost savings of the form (3.2.8). Firms outside S charge
in total a multiple of the amount of the critical demand.
(ii) If the critical demand is feasible (i.e., if the demand’s intercept V is large
enough), then according to the (unique) solution of the maximization program
at the first stage, each firm i ∈ S charges the price amounting the midpoint
of its marginal cost ci and V

h(s) which is strictly larger than the average cost

c̄S, and the coalitional worth vβ(S) equals the sum of the cost savings and the
square of the critical demand of the form (3.2.8). Firms outside S do not
charge any price.

Proof. Let S ⊆ N , S ̸= ∅.
Part 1. Let i ∈ S. The partial derivative ∂πS

∂pi
of the coalitional profit function
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πS of the form (3.2.5) is as follows:

∂πS
∂pi

(pS , pN\S)

=

[
V − (1 + r) · pi + r

n

∑
k∈N

pk

]
+ (pi − ci)

[
−(1 + r) + r

n

]
+

∑
j∈S\{i}

(pj − cj)
r
n

= V − (1 + r) · (2 · pi − ci) +
r
n ·

∑
j∈S

(pj − cj) +
r
n ·

∑
k∈N

pk

Consequently, the solution to the first order conditions ∂πS
∂pi

= 0, i ∈ S, satisfies,

pi =
ci
2 + 1

2·(1+r) ·
[
V + r

n ·
[∑
j∈S

(pj − cj) +
∑
k∈N

pk

]]
for all i ∈ S

So far, we conclude that for the solution to the first order conditions (associ-

ated with the maximization program) it holds that pi − ci
2 is constant for all

i ∈ S, say pi − ci
2 = p̄S

2 for every i ∈ S. Through substitution in the latter

expression, we arrive at the following relationships:

(1 + r) · p̄S = V +
r

n
·
[ ∑
k∈N\S

pk +
∑
j∈S

(2 · pj − cj)

]

= V +
r

n
·
[ ∑
k∈N\S

pk + s · p̄S
]

(3.2.9)

Rewriting the latter equality yields[
1 + r − r · s

n

]
· p̄S = V +

r

n
·

∑
k∈N\S

pk and thus,

p̄S = h(s)−1 ·
[
V +

r

n
·

∑
k∈N\S

pk

]
(3.2.10)

Recall that the solution p̄Si to the first order conditions is given by the midpoint

of the marginal cost of firm i and the common price charge p̄S by members

of coalition S, i.e., p̄Si = p̄S+ci
2 for all i ∈ S. In case S = N , then (3.2.10)

reduces to p̄N = V and so, according to the (unique) optimal solution of this
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maximization program, each firm charges the price amounting the midpoint

of the demand’s intercept V and the marginal cost of the firm (as stated at

the beginning of Section 3.2).

Part 2. Let S ̸= N , concerning the subsequent minimization program

minpN\S∈XN\S πS((p̄
S
j )j∈S , pN\S), we derive from (3.2.5) that its objective func-

tion reduces as follows:

πS((p̄
S
j )j∈S , pN\S)

=
∑
j∈S

(p̄Sj − cj) ·
[
V − (1 + r) · p̄Sj +

r

n
·
∑
k∈S

p̄Sk +
r

n
·

∑
k∈N\S

pk

]

=
∑
j∈S

p̄S−cj
2 ·

[
V − (1 + r) · p̄S+cj

2 + r
2·n · [s · p̄S + s · c̄S ] + r

n ·
∑

k∈N\S
pk

]

=
∑
j∈S

p̄S−cj
2 ·

[
V − h(s)

2 · p̄S − 1+r
2 · cj + r·s

2·n · c̄S + r
n ·

∑
k∈N\S

pk

]
(3.2.11)

By (3.2.10), the partial derivatives of p̄S with respect to non-members of S

do not differ in that ∂p̄S
∂pℓ

= r
n·h(s) for all ℓ ∈ N\S. Hence, by differentiating

(3.2.11), we obtain the following: for all l ∈ N \ S,

∂πS
∂pℓ

((p̄Sj )j∈S , pN\S)

=
∑
j∈S

r

2 · n · h(s)
·
[
V − h(s)

2
· p̄S − 1 + r

2
· cj +

r · s
2 · n

· c̄S +
r

n
·

∑
k∈N\S

pk

]

+
∑
j∈S

p̄S−cj
2 ·

[
−h(s)

2 · r
n·h(s) +

r
n

]
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=
r

2 · n · h(s)

[
sV − h(s)

2
· s · p̄S − 1 + r

2
· s · c̄S +

r · s2

2 · n
· c̄S +

rs

n
·

∑
k∈N\S

pk

]

+
1

2
·
[
s · p̄S − s · c̄S

]
· r

2 · n

=
r · s

2 · n · h(s)
·
[
V +

r

n
·

∑
k∈N\S

pk

]
− r · s

2 · n
· c̄S

Concerning the solution to the minimization program, we conclude that the

first order conditions ∂πS
∂pℓ

((p̄Sj )j∈S , pN\S) = 0 for all ℓ ∈ N\S yield

V +
r

n
·

∑
k∈N\S

pk = h(s) · c̄S (3.2.12)

Finally, take care about the non-negativity constraint for prices.

Part 3. Suppose the demand’s intercept V is small enough in that V <

h(s) · c̄S . Under these circumstances, we derive from (3.2.12) and in turn

(3.2.10) that it holds

r

n
·
∑

k∈N\S

p̄k = h(s)·c̄S−V and p̄S = c̄S and p̄Si =
c̄S + ci

2
for all i ∈ S.

In words, the optimal solution is given by the midpoint of the marginal

cost of any firm and the average cost of the coalition S. It is left to the reader

to check the following relationship:

V − (1 + r) · p̄Sj + r
n ·

∑
k∈N

p̄k = 1+r
2 · [c̄S − cj ] for all j ∈ S.
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Consequently, by (3.2.5), the coalitional profit reduces as follows:

vβ(S) = πS((p̄
S
j )j∈S , p̄N\S)

=
∑
j∈S

[p̄Sj − cj ] ·
[
V − (1 + r) · p̄Sj +

r

n
·
∑
k∈N

p̄k

]

=
(1 + r)

2
·
∑
j∈S

[p̄Sj − cj ] · [c̄S − cj ] =
(1 + r)

4
·
∑
j∈S

[c̄S − cj ] · [c̄S − cj ]

=
(1 + r)

4
·
∑
j∈S

[c̄S − cj ]
2 =

(1 + r)

4
·
[∑
j∈S

(cj)
2 − s · (c̄S)2

]
(3.2.13)

This game of the form (3.2.13) has the same similarity with the notion of

variance V ar[x] = δ[(x − δ[x])2] = δ[x2] − (δ[x])2, thus we call this game

variance game.

Part 4. Suppose the demand’s intercept V is large enough in that V ≥
h(s) · c̄S . Under these circumstances, we derive from (3.2.12) and in turn

(3.2.10) that it holds∑
k∈N\S

p̄k = 0 and p̄S =
V

h(s)

Recall that p̄Si = p̄S+ci
2 for all i ∈ S. It is left to the reader to check the

following relationship:

V − (1 + r) · p̄Sj + r
n ·

∑
k∈N

p̄k = 1
2 ·

[
V − (1 + r) · cj + r·s

n · c̄S
]

Consequently, by (3.2.5), the coalitional profit reduces as follows:
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vβ(S) = πS((p̄
S
j )j∈S , p̄N\S)

=
∑
j∈S

[p̄Sj − cj ] ·
[
V − (1 + r) · p̄Sj +

r

n
·
∑
k∈N

p̄k

]

=
1

4
·
∑
j∈S

[p̄S − cj ] ·
[
V − (1 + r) · cj +

r · s
n

· c̄S
]

=
s · V 2

4 · h(s)
− V

2
·
∑
j∈S

cj +
1 + r

4
·
∑
j∈S

(cj)
2 − r

4 · n
·
[∑
j∈S

cj

]2
(3.2.14)

The latter equality is explained as follows by counting for the six combinations.∑
j∈S

p̄S · V = s · V · p̄S =
s · V 2

h(s)

∑
j∈S

p̄S · (−)(1 + r) · cj = −(1 + r) · s · p̄S · c̄S

∑
j∈S

p̄S · r · s
n

· c̄S =
r · s2

n
· c̄S · p̄S

∑
j∈S

(−cj) · V = −V · s · c̄S = −s · h(s) · c̄S · p̄S

∑
j∈S

(−cj) · (−1) · (1 + r) · (cj) = (1 + r) ·
∑
j∈S

(cj)
2

∑
j∈S

(−cj) ·
r · s
n

· c̄S = −r · s2

n
· (c̄S)2 = − r

n
·
[∑
j∈S

cj

]2
Concerning the expression c̄S · p̄S counting the three contributions yield[
−(1+ r) · s+ r · s2

n
− s ·h(s)

]
· c̄S · p̄S = −2 · s ·h(s) · c̄S · p̄S = −2 · s ·V · c̄S

as was to be shown. This completes the overall proof. 2
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Remark 3.1. For the game of the form (3.3.2), (i)We use (3.3.1) instead the
classical definition of convexity by which we are blocked in the process to prove
the game is convex.
(ii)The role of function h : h(x) = 1+ r− r·x

n , x ∈ R is important not only be-
cause it shortens the expression of the value function, but also in the condition
of (3.2.7) and the game expression w2.

3.3 Convexity of the non-degenerated Bertrand Oligopoly
TU-Game

Let P(N) = {S | S ⊆ N} denote the power set of any finite set N , consist-

ing of all subsets of N . A cooperative TU game (N,w) is a pair of the finite

player set N and the so-called characteristic function w : P(N) → R satisfying

w(∅) = 0. For instance, consider the n-person game (N, v) of the form (3.2.8)

derived from three almost equal marginal costs c1 = c− 1, c2 = 1, c3 = c+ 1,

and arbitrary marginal costs ci for other firms i ∈ {4, 5, . . . , n}, n ≥ 4. This

type of oligopoly game is zero-normalized in that v({i}) = 0 for all i ∈ N ,

while v({1, 2}) = v({2, 3}) = 1
2 and v({1, 3}) = v({1, 2, 3}) = 2. Involving

player 2’s marginal contribution rewards for joining any coalition, player 2

gains nothing for joining the couple S = {1, 3} since v({1, 2, 3})− v({1, 3}) =
0, whereas forming a couple with player 1 yields a positive profit amount-

ing v({1, 2}) − v({1}) = 1
2 . In this setting we say the convexity constraint

v({1, 2})− v({1}) ≤ v({1, 2, 3})− v({1.3}) is violated.
For the development of the solution theory in the field of Cooperative game

theory, it is of significant importance to gather knowledge whether a certain

subclass of cooperative games satisfies any particular property like convex-

ity. If the convexity applies, one may benefit from various theoretical results

about solution concepts, such as shrinking of the multi-valued solution called

Pre-kernel to the single-valued concept called Nucleolus, providing the non-

emptiness of the multi-valued solution called Core, its regular structure de-

scribed through increasing marginal contributions of individuals for joining

coalitions, and as such, to study the center of the Core by the solution called

Shapley value, as studied in the next section. In the present section we aim

to prove the convexity property for Bertrand oligopoly games of the form

(3.2.7), in spite of the failure for Bertrand oligopoly games of the degenerated
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form (3.2.8). The proof technique is based on the decomposition of any non-

degenerated Bertrand oligopoly game into the difference of two appropriate

games satisfying the convexity property. Generally speaking, the difference

game does not inherit the convexity property, but Bertrand oligopoly games

do thanks to the existence of special conditions (see Theorem 3.3).

Recall the definition of convex game again. A cooperative game (N,w) is

said to satisfy the convexity (or supermodularity) property if its characteristic

function w : P(N) → R satisfies one of the following equivalent conditions

(Shapley, 1971):

w(S) + w(T ) ≤ w(S ∪ T ) + w(S ∩ T ) for all S, T ⊆ N.

w(S ∪ {i})− w(S) ≤ w(T ∪ {i})− w(T )

for all i ∈ N and all S ⊆ T ⊆ N\{i}.

w(S ∪ {i})− w(S) ≤ w(S ∪ {i, j})− w(S ∪ {j}) (3.3.1)

for all i, j ∈ N , i ̸= j, and all S ⊆ N\{i, j}.

A cooperative game (N,w) is said to be non-essential (additive) if its char-

acteristic function w : P(N) → R satisfies w(S) =
∑

j∈S w({j}) for all S ⊆ N ,

S ̸= ∅. Obviously, non-essential games are convex since all convexity condi-

tions are met as equalities. According to the alternative, equivalent description

(3.2.14), any non-degenerated Bertrand oligopoly game of the form (3.2.7) is

decomposed into three types of games as follows: for all S ̸= ∅

vβ(S) = w1(S) +
V 2

4 · w2(S)− r
4·n · w3(S) (3.3.2)

w1(S) =
∑
j∈S

[
(1+r)

4 · (cj)2 − V
2 · cj

]
(3.3.3)

w2(S) =
s

h(s)
= g(S) (3.3.4)

w3(S) =

[∑
j∈S

cj

]2
(3.3.5)
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In fact, the non-essential game (N,w1) is redundant for the convexity property.

The game (N,w3) is the square of a standard non-essential game. Generally

speaking, the square of any non-essential game is convex too because the

marginal contribution of a fixed player i with respect to variable coalitions

S ⊆ N\{i} are non-decreasing with respect to set inclusion, that is, for all

i, j ∈ N , i ̸= j, and all S ⊆ N\{i, j}, the following holds:

w3(S ∪ {i})− w3(S)

=

[ ∑
k∈S∪{i}

ck

]2
−

[∑
k∈S

ck

]2
=

[
ci +

∑
k∈S

ck

]2
−

[∑
k∈S

ck

]2
= (ci)

2 + 2 · ci ·
∑
k∈S

ck and similarly, (3.3.6)

[
w3(S ∪{i, j})−w3(S ∪{j})

]
= (ci)

2 +2ci ·
∑

k∈S∪{j}

ck So, we conclude,

[
w3(S∪{i, j})−w3(S∪{j})

]
−
[
w3(S∪{i})−w3(S)

]
= 2 ·ci ·cj ≥ 0 (3.3.7)

Lemma 3.1. Given the substitutability parameter r > 0, define the real-valued
function g : [0, 1

rn
) → R by

g(x) =
1

(1 + r)
· x

(1− rn · x)
for all x ∈ [0, 1

rn
), where rn = r

n·(1+r) (3.3.8)

Then the following holds:
(i) w2(S) = g(s) for all S ⊆ N with size s, s = 0, 1, 2, . . . , n and g(n) = n
(ii) The function g : R → R is strictly increasing and strictly convex on the
interval [0, 1

rn
) and consequently, the game (N,w2) is strictly convex in that

g(s+2)−g(s+1) > g(s+1)−g(s) for all s = 0, 1, 2, . . . , n− 2 (3.3.9)

(iii) The marginal returns of the function g satisfy

g(s+ 1)− g(s) =
1 + r

h(s) · h(s+ 1)
(3.3.10)

(iv) Applying (3.3.10) twice yields[
g(s+ 2)− g(s+ 1)

]
−

[
g(s+ 1)− g(s)

]
=

2

n
· r · (1 + r)

h(s) · h(s+ 1) · h(s+ 2)

(3.3.11)
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(v) An alternative representation of the worth vβ(S) of coalition S is as follows:

vβ(S) =
1

4·g(s) ·
[
V ·g(s)−s·c̄S

]2
+ 1+r

4 ·
∑
j∈S

·
[
cj−c̄S

]2
provided g(s)

s > c̄S
V

(3.3.12)

Proof. Let S ⊆ N be of size s, s = 0, 1, 2, . . . , n. From (3.3.8) and (3.3.4),

we derive

g(s) =
s

(1 + r) · (1− rn · s)
=

s

(1 + r) · (1− r·s
n·(1+r))

=
s

h(s)
= w2(S)

The representation (3.3.12) of the worth vβ(S) agrees with (3.2.14) since

[s · c̄S ]2

g(s)
− (1+ r) · s · (c̄S)2 =

[
h(s)

s
− (1 + r)

s

]
·
[
s · c̄S

]2
=

−r

n
·
[∑
j∈S

cj

]2
It is very simple to verify that the first and second derivative of the differ-

entiable function g(x) are given by g′(x) = 1
(1+r) ·

1
(1−rn·x)2 > 0 as well as

g′′(x) = 2
(1+r) ·

rn
(1−rn·x)3 > 0. Recall that a differentiable function is convex if

and only if the second derivative is non-negative. 2

In summary, so far, all three games (N,wk), k = 1, 2, 3, are convex where

the first non-essential game is redundant for the convexity property. Because

the non-degenerated Bertrand Oligopoly Game of the form (3.3.2) is the dif-

ference of two convex games, it may fail to be convex itself. According to

the proof of the next main theorem, convexity still holds for the Bertrand

oligopoly game due to the existence of the underlying constraints.

Theorem 3.3. Suppose the demand’s intercept V is large enough to cover
any slightly adapted marginal cost in that V > h(1) · maxk∈N ck. Then the
non-degenerated Bertrand oligopoly game (N, vβ) of the form (3.3.2) is convex
(supermodular).

Proof. In view of the decomposition (3.3.2), the non-degenerated Bertrand

oligopoly game is convex if and only if the game (N,w2 − r
n·V 2 ·w3) is convex.

By Lemma 3.1(i), w2(S) = g(s) for all S ⊆ N , whereas (3.3.7) holds in the
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setting of the game (N,w3). In summary, the convexity property (3.3.1) ap-

plies to the Bertrand oligopoly game if and only if the following holds: for all

i, j ∈ N , i ̸= j, and all s = 0, 1, 2, . . . , n− 2,[
g(s+ 2)− g(s+ 1)

]
−

[
g(s+ 1)− g(s)

]
≥ r

n · V 2
·
[
2 · ci · cj

]
(3.3.13)

By assumption, ck ≤ V
h(1) for k ∈ {i, j} and thus, it suffices to prove[

g(s+ 2)− g(s+ 1)

]
−

[
g(s+ 1)− g(s)

]
≥ 2 · r

n
· 1

(h(1))2
(3.3.14)

Recall the function g(x) = x
h(x) and the results (3.3.10)–(3.3.11). Note that

the expression at the right hand of (3.3.11) is non-decreasing in the variable

coalition size s, attaining its minimum at s = 0. It follows that[
g(s+ 2)− g(s+ 1)

]
−

[
g(s+ 1)− g(s)

]

=
2

n
· r · (1 + r)

h(s) · h(s+ 1) · h(s+ 2)
≥ 2

n
· r · (1 + r)

h(0) · h(1) · h(2)

=
2

n
· r

h(1) · h(2)
≥ 2

n
· r

(h(1))2

This completes the proof of convexity for the non-degenerated Bertrand oligopoly

game assuming V > h(1) ·maxk∈N ck. 2

3.4 Shapley value of the non-degenerated Bertrand
Oligopoly Game

The decomposition (3.3.2) of the non-degenerated Bertrand oligopoly game

(N, vβ) into three types of games permits to determine its Shapley value

Sh(N, vβ) on the basis of the following four properties: linearity, efficiency,

symmetry, and strategic equivalence. Generally speaking, the Shapley value

Sh(N,w) = (Shi(N,w))i∈N of a cooperative game (N,w) is given by an ap-

propriate weighted, probabilistic sum of player’s marginal contributions of the

form w(S ∪ {i})− w(S), S ⊆ N\{i}, that is [56]

Shi(N,w) =
∑

S⊆N\{i}

pn(s) ·
[
w(S ∪{i})−w(S)

]
for all i ∈ N , (3.4.1)
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where pn(s) =
1

n·(n−1
s )

for all s = 0, 1, 2, . . . , n− 1.

Due to its probabilistic interpretation, the Shapley value of any non-

essential game (N,w) equals the individual worth w({i}), i ∈ N . Secondly,

because of anonymity and efficiency, the Shapley value of the symmetric game

(N,w2) is fully determined by

Shi(N, V
2

4 · w2) =
V 2

4 · w2(N)
n = V 2

4·n · n
h(n) =

V 2

4·h(n) =
V 2

4 for all i ∈ N.

Thirdly, the computation of the Shapley value of the quadratic game (N,w3)

proceeds by using (3.3.5) yielding for all i ∈ N

Shi(N,w3) =
∑

S⊆N\{i}

pn(s)·
[
(ci)

2+2·ci·
∑
j∈S

cj

]
= (ci)

2+2·ci·
∑

S⊆N\{i}

pn(s)
∑
j∈S

cj

Through the inverse order
∑

j∈N\{i}
cj ·

∑
S⊆N\{i}.

S∋j

pn(s), together with two com-

binatorial steps, we arrive at Shi(N,w3) = ci ·
∑

j∈N cj = n · ci · c̄N . Finally,

by applying the linearity of the Shapley value, we conclude the following:

Theorem 3.4. The Shapley value of the non-degenerated Bertrand oligopoly
game of the form (3.3.2) is given by

Shi(N, vβ) =
1+r
4 · (ci)2 − V

2 · ci + V 2

4 − r
4 · ci · c̄N for all i ∈ N (3.4.2)

In short, Shi(N, vβ) =
(V−ci)

2

4 + r
4 · ci · (ci − c̄N ) for all i ∈ N .

In words, the Shapley value of the non-degenerated Bertrand oligopoly

game involves two types of payoffs to each firm i, i ∈ N , namely the square

of the netto demand intercept V − ci, as well as a proportional part ci of the

firm’s deviation ci − c̄N from the average grand coalitional cost.

Without going into details, the multi-valued solution concept called Core is a

convex, compact (possibly empty) set of Rn and as such, the Core is the convex

hull of its extreme points. According to the theory for strict convex games,

developed by Shapley [54], there exist n! distinct extreme points x⃗ ∈ Rn, of

which each component xi, i ∈ N , equals some marginal contribution of the

specific form xi = w(P θ
i ∪ {i}) − w(P θ

i ) where P θ
i = {j ∈ N | θ(j) < θ(i)}

represents the predecessors of player i with respect to the permutation θ :

N → N of the player set N . In the framework of Bertrand oligopoly games
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(N, vβ), from its decomposition (3.3.2) we conclude that the payoff to player

i according to an extreme point of the Core is given as follows (here S = P θ
i

and s its cardinality):

xi = (1+r)
4 · (ci)2 − V

2 · ci + V 2

4 ·
[
g(s+ 1)− g(s)

]
− r

4·n ·
[
(ci)

2 + 2 · ci ·
∑

k∈P θ
i

ck

]

= h(1)
4 · (ci)2 + V 2

4 · 1+r
h(s)·h(s+1) −

V
2 · ci − r·s

2·n · ci · c̄S

For example, if there are no predecessors, that is S = ∅ and s = 0, then

the payoff xi reduces as follows:

xi =
h(1)

4
· (ci)2 +

V 2

4 · h(1)
− V

2
· ci =

1

4 · h(1)
·
[
h(1) · ci − V

]2
= vβ({i})

3.5 Concluding Remarks

The Bertrand oligopoly situation with Shubik’s demand functions has been

modeled as a cooperative TU-game by Lardon [36], but only with reference to

identical marginal costs for all firms. The current chapter continues to study

the general situation with distinct marginal costs. The complexity of the

description of the associated cooperative game, as a result of solving two sub-

sequent optimization programs, is compensated by decomposing the Bertrand

oligopoly game into three types of games, namely one non-essential game,

one symmetric game, and the square of one non-essential game. Although it

concerns the difference of two convex games, it is shown that the Bertrand

oligopoly game is convex too. Its current proof technique by decomposition

differs from Lardon’s proof of convexity for the symmetrical Bertrand oligopoly

game which can be found in [35]. The study ends with the computation of

the Shapley value and the extreme points of the Core. The γ−characteristic

function form for Bertrand oligopoly games has already been studied in a yet

unpublished memorandum [14].



Chapter 4

The Shapley value and the
Nucleolus of Service cost
savings games

ABSTRACT - In this chapter, the main goal is to introduce the so-

called Service cost savings games involving n different customers re-

quiring service provided by companies. For these specific cooperative

games, on one hand, we determine the Shapley value allocation for

these Service cost savings games through a decomposition method for

games into one additive game and one Sharing car pooling cost game,

exploiting the linearity of the Shapley value. On the other hand, we

determine the Nucleolus allocation as well, by exploiting fully the so-

called 1-convexity property for these Service cost savings games.

4.1 Introduction: the Service cost savings game

Consider the situation in which each customer requires some type of transfer-

able service (like information about or transportation of goods). All the local

companies provide the same service, but the cost of serving by any company

depends on the distance between the locations of the customer i ∈ N and the

53
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company j ∈ M . In the noncooperative setting, for single customer i ∈ N , his

total cost will be
∑

i∈S
∑

j∈M cij , in order to provide service to all the compa-

nies M . All the costs of service are gathered in an nonnegative (n×m)−cost

matrix C = [cij ]i∈N,j∈M , the rows of which are indexed by customers and the

columns by companies. In case the service is transferable, any coalition of cus-

tomers may benefit from their mutual cooperation by providing the service by

one company with the cheapest service. In this framework, the Service cost

savings game (N, vC) is defined by its characteristic function vC : 2N → R

satisfying vC(∅) = 0 and for all S ⊆ N,S ̸= ∅,

vC(S) =
∑
i∈S

∑
j∈M

cij −
∑
j∈M

min
i∈S

cij (4.1.1)

Note that the aggregate individual cost of customer i amounts the sum∑
j∈M cij , whereas in the cooperative setting we assume the possibility of

transferable services by the members of companies. Hence, the cost of any

coalition of customers amounts the sum of aggregate individual cost.

Clearly, one-person coalitions gain nothing and further, the larger the

coalition, the larger its gains. So, the Service cost savings game of (4.1.1)

is zero-normalized(i.e., vC({i}) = 0 for all i ∈ N) as well as the game is

monotonic too(i.e., vC(S) ≤ vC(T ) whenever S ⊆ T ⊆ N). By rewriting the

order of summation in (4.1.1), we achieve the following decomposition: for all

S ⊆ N,S ̸= ∅,

vC(S) =
∑
j∈M

[
∑
i∈S

cij −min
i∈S

cij ] =
∑
j∈M

vj(S) (4.1.2)

By (4.1.2), the game decomposition vC =
∑

j∈M vj holds. Here, for each

j ∈ M , the characteristic function vj : 2N → R of the corresponding game

(N, vj) is given by

vj(S) =
∑
i∈S

cij −min
i∈S

cij for all S ⊆ N,S ̸= ∅. (4.1.3)

Since the first expression at the right hand side of (4.1.3) concerns an

additive game, we have that any game (N, vj), j ∈ M , is relative invariant

under strategic equivalence with the cost games (N,C) that is called Sharing
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car pooling cost game of which the characteristic cost function C : 2N → R

satisfies

C(S) = min
k∈S

C({k}) for all S ⊆ N,S ̸= ∅. (4.1.4)

We remark that any Sharing car pooling cost game (N,C) of the form (4.1.4),

in which the minimum operator is replaced by the maximum operator, is

known as the airport cost game introduced by Littlechild and Owen [40].

4.2 The Shapley value of the Sharing car pooling
cost game and the Service cost savings games
through a game decomposition procedure

With the model entitled the Sharing car pooling cost game at hand, we aim to

determine the solution part (Shapley value, Nucleolus) through the determi-

nation of the well-known Shapley value [56] for Sharing car pooling cost game.

Usually, the cost allocation according to the Shapley value provides a distri-

bution of the overall cost amounting C(N) among all the participants based

on marginal contributions of the form C(S ∪ {i}) − C(S), S ⊆ N\{i}, i ∈ N .

In the framework of the Sharing car pooling cost game, it is rather complex

to determine these marginal contributions. Therefore, we proceed by using

another algebraic technique based on the (simple) computation of the Shapley

value for a certain basis of the game space with fixed player set N . For that

purpose, with every coalition T ⊆ N,T ̸= N,T ̸= ∅, there is associated the

complementary unanimity cost game (N,UT ) given by

UT (S) =

 1, if S ̸= ∅ and S ∩ T = ∅;
0, if S = ∅ or S ∩ T ̸= ∅.

(4.2.1)

Further, the complimentary unanimity cost game (N,U∅) is given by U∅(∅) =
0 and U∅(S) = 1 otherwise. Note that UT (N) = 0 for all T $ N , except T = ∅.
As is shown in [10], the well known Shapley value cost allocation charged to the

players of any n-person complementary unanimity cost game (N,UT ) agrees

with the semi-egalitarian rule such that members of T receive less the unitary
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amount, that is,

Shi(N,UT ) =

 1
n , for all i ∈ N\T ;
1
n − 1

|T | , for all i ∈ T .
(4.2.2)

Theorem 4.1. Suppose without loss of generality 0 ≤ C({1}) ≤ . . . ≤ C({n}).
Write C({0}) = 0
(i) Every Sharing car pooling cost game (N,C) of the form (4.1.4) can be
decomposed as the following linear combination of a number of complementary
unanimity cost games with nonnegative coefficients:

C =

n−1∑
j=0

[
C({j + 1})− C({j})

]
· UIj (4.2.3)

where I0 = ∅, Ij = {1, 2, . . . , j} for all j ∈ N .
(ii) The Shapley cost allocation Sh(N,C) for the Sharing car pooling cost game
(N,C) equals

Shi(N,C) =
C({n})

n
−

n−1∑
j=i

C({j + 1})− C({j})
j

=
C({i})

i
−

n∑
k=i+1

C({k})
k · (k − 1)

for all i ∈ N. (4.2.4)

(iii) The Shapley cost allocation Sh(N,C) for an n−person airport cost game
(N,C) equals

Shi(N,C) =
i−1∑
j=0

C({j + 1})− C({j})
n− j

for all i ∈ N. (4.2.5)

Proof. (i) Fix coalition S ⊆ N , S ̸= ∅. Write C(S) = C({k}) such that

k ∈ S and ℓ ̸∈ S for all 1 ≤ ℓ < k. Given any 0 ≤ j ≤ n − 1, the following

equivalences hold: UIj (S) = 1 iff S∩Ij = ∅ iff 0 ≤ j < k. From this, we derive

the validity of (4.2.3).

(ii) The validity of (4.2.4) is thanks to the linearity property of the Shapley

value applied to the former decomposition result (4.2.3) and using the Shapley

value cost allocations of (4.2.2) as follows. Write C({0}) = 0. For all i ∈ N ,
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it holds

Shi(N,C) =

n−1∑
j=0

[C({j + 1})− C({j})] · Shi(N,UIj )

=
1

n
·
n−1∑
j=0

[C({j + 1})− C({j})]−
n−1∑
j=i

1

|Ij |
· [C({j + 1})− C({j})]

=
C({n})

n
−

n−1∑
j=i

1

j
· [C({j + 1})− C({j})]

(iii) Because of the relationship maxi∈S C({i}) = C({n}) −mini∈S [C({n}) −
C({i})] for all S ⊆ N , S ̸= ∅, every n-person airport cost game with stand-

alone costs C({i}), i ∈ N , (ordered as an increasing sequence), is associated

with a Sharing car pooling cost game with adapted stand-alone costs C({n})−
C({i}), i ∈ N , to be ordered as an increasing sequence. In this setting, (4.2.5)

is a direct consequence of (4.2.3) applied to this latter cost game.

According to the Shapley value of Sharing car pooling cost game, we can

understand it as follows: for the ordered car owners with C({1}) ≤ C({2}) ≤
. . . ≤ C({n}), in the beginning, there is only one car owner 1, the cost of the

journey for him is C({1}); then player 2 is involved which makes the cost of

player 1 less and the decreasing amount is C({2})
2 while the cost of player 2

is C({2})
2 ; after that, player 3 joins in which makes the cost of players 1 and

2 less and the the total decreasing amount is C({3})
3 which is divided equally

between players 1 and 2 while the cost of player 3 is C({3})
3 ;...; finally, player

n joins in, the cost of him equals C({n})
n , while this amount is divided equally

among the other n− 1 players. 2

Corollary 4.1. For fixed i, j, i ∈ N, j ∈ M , we use Nij = {k ∈ N |ckj <
cij or (ckj = cij and k ≤ i)} to denote the set of companies whose cost
is smaller or equal to cij. Then by Theorem (4.1), we obtain the Shapley value
of the Service cost game as follows:

Shi(N, vC) =
∑
j∈M

cij−
∑
j∈M

[
cij
|Nij |

−
∑

k∈N\Nij

ckj
|Nkj | · (|Nkj | − 1)

], i ∈ N (4.2.6)

Particularly, it requires
ckj

|Nkj |·(|Nkj |−1) = 0, k ∈ N if |Nkj | = 1.
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4.3 The Nucleolus of the Sharing car pooling cost
game and the Service cost savings game

In addition to the Shapley cost allocation, we aim to determine the Nucleolus

cost allocation for Sharing car pooling cost game and the Service cost savings

game. We avoid the technical definition of the Nucleolus of an arbitrary cost

game (N,C) because a significant property of its characteristic function C :

2N → R enables us to complete the Nucleolus( as well as the Core) in a

straightforward way.

Definition 4.1. [22], [21], [23] A cooperative cost game (N,C) with player set
N is said to satisfy the 1-concavity property if its characteristic cost function
C : 2N → R satisfies

C(N) ≤ C(S) +
∑

i∈N\S

∆i(N,C) for all S $ N , S ̸= ∅, and (4.3.1)

C(N) ≥
∑
i∈N

∆i(N,C) where ∆i(N,C) = C(N)− C(N\{i}) (4.3.2)

Condition (4.3.1) requires that the cost C(N) of the formation of the grand

coalition N can be covered by any coalitional cost C(S) together with the

marginal costs ∆i(N,C), i ∈ N\S, of all the complementary players. Accord-

ing to condition (4.3.2), all these marginal costs are weakly insufficient to cover

the overall cost C(N).

Theorem 4.2. (i) In the framework of Sharing car pooling cost game of the
form (4.1.4), 1−concavity holds.
(ii) By the decomposition result, the Service cost savings game is 1−convex.
(iii)The Nucleolus of the Sharing car pooling cost game is:

Nui =

{
C({2})

n , for all i ∈ N\{1};
C({2})

n − [C({2})− C({1})], i = 1.
(4.3.3)

Proof. (i) Let (N,C) be a Sharing car pooling cost game. Suppose with-

out loss of generality that 0 ≤ C({1}) ≤ C({2}) ≤ . . . ≤ C({n}). Then

it holds C(N) = C({1}), C(N\{1}) = C({2}), and C(N\{k}) = C({1})
for all k ∈ N\{1}. Concerning the marginal costs, we have ∆k(N,C) = 0
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for all k ∈ N\{1}, and ∆1(N,C) = C({1}) − C({2}). We distinguish two

types of coalitions S. In case 1 ∈ S, then ∆i(N,C) = 0 for all i ∈ N\S,
whereas C(S) = C({1}) = C(N), thus, the 1-concavity condition (4.3.1) is

met as a system of equalities. In case 1 ∈ N\S, then (4.3.1) reduces to

C(N) ≤ C(S)+C(N)−C(N\{1}) or equivalently, C(S) ≥ C({2}) and hence,

the 1-concavity property holds too if 1 ̸∈ S. This proof technique illustrates

that the largest stand-alone costs C({k}), 3 ≤ k ≤ n, do not matter for the

1-concavity property as long as their truncation remains above the second

smallest stand-alone cost C({2}). In this setting, (4.3.2) holds trivially.

(ii)The proof is trivial by (i).

(iii) In the framework of 1−concave cost games of the form (4.1.4), According

to the theory developed for n-person 1-concave cost games (N,C) [21], the

so-called Nucleolus cost allocation for any Sharing car pooling cost game is

given by

∆i(N,C)− 1

n
· [
∑
k∈N

∆k(N,C)− C(N)]

= ∆i(N,C) +
C({2})

n
=

C({2})
n

for all i ̸= 1. (4.3.4)

So every player receives the egalitarian split C({2})
n , and player 1 looses the

additional amount C({2})− C({1}). 2

Corollary 4.2. For fixed j ∈ M , we use C1
j and C2

j to denote the smallest
and second smallest cost. Then the Nucleolus of the Service cost savings game
is: Nui(N, vC) =

∑
j∈M Ai(j) where

Ai(j) =

{
C2

j

n + (C1
j − C2

j ), if cij = C1
j ;

C2
j

n , otherwise.
(4.3.5)

4.4 Concluding Remarks

The proof of the 1-concavity property for Sharing car pooling cost game is

treated in Section 4.3, which is the basis for the proof of the 1-convexity of

Service cost savings game. The decomposition of the Service cost savings

game is an extremely helpful tool for the determination of the Shapley and
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Nucleolus cost allocation, which can be found in Section 4.2 and Section 4.3.

Due to 1-concavity, the formula (4.3.4) for the Nucleolus cost allocation is fully

determined in terms of the marginal costs ∆i(N,C) = C(N)−C(N\{i}), i ∈
N , together with C(N) = 0. Finally, two other applications of one-concavity

or one-convexity, called library game and co-insurance game respectively, have

been studied by Theo Driessen. The Nucleolus for 2-convex games is treated

in [15]. The search for other appealing classes of cost games satisfying the

1-concavity property is still going on.



Chapter 5

The Nucleolus for 2-convex
TU games

ABSTRACT - In this chapter, we consider 2-convex n person coop-

erative TU games. The Nucleolus is determined as some type of con-

strained equal award rule. Its proof is based on Maschler, Peleg, and

Shapley’s geometrical characterization for the intersection of the Pre-

kernel with the Core. Pairwise bargaining ranges within the Core are

required to be in equilibrium. This system of non-linear equations is

solved and its unique solution agrees with the Nucleolus.

5.1 Introduction

For 2-convex n-person cooperative TU games, the Nucleolus is determined as

some type of constrained equal award rule. Its proof is based on Maschler,

Peleg, and Shapley’s geometrical characterization for the intersection of the

Pre-kernel with the Core. Pairwise bargaining ranges within the Core are

required to be in equilibrium. This system of non-linear equations is solved

and its unique solution agrees with the Nucleolus.

Fix the player set N and its power set P(N) = {S|S ⊆ N} consisting of all

the subsets of N (including the empty set ∅). A cooperative transferable utility

61
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(TU) game is given by the so-called characteristic function v : P(N) → R

satisfying v(∅) = 0. That is, the TU game v assigns to each coalition S ⊆ N

its worth v(S) amounting the (monetary) benefits achieved by cooperation

among the members of S. The marginal benefit bvi of player i in the game

v is defined by bvi = v(N) − v(N\{i}) for all i ∈ N . Associated with the

game v there is the so-called gap function gv : P(N) → R such that, for every

coalition S, its gap gv(S) represents the surplus of the marginal benefits of its

members over its worth, i.e., gv(S) =
∑

k∈S bvk − v(S) for all S ⊆ N , where

gv(∅) = 0. A payoff vector x⃗ = (xk)k∈N ∈ RN is said to belong to the Core

Core(v) if it satisfies, besides the efficiency constraint
∑

k∈N xk = v(N), the

group rationality constraints
∑

k∈S xk ≥ v(S) for all S ⊆ N , S ̸= ∅. It is

simple to observe that the marginal benefit of any player is an upper bound

for Core allocations in that xi ≤ bvi for all i ∈ N , all x⃗ ∈ Core(v).

Recall the definition of 1-convex game which has been given in chapter 1.

Definition 5.1. An n-person game v is said to be 1-convex if its corresponding
nonnegative gap function gv attains its minimum at the grand coalition N ,
i.e.,

gv(S) ≥ gv(N) ≥ 0 for all S ⊆ N , S ̸= ∅ (5.1.1)

In terms of the characteristic function v, (5.1.1) requires that v(N) ≥
v(S) +

∑
k∈N\S bvk for every non-trivial coalition. In words, concerning the

division problem, the worth v(N) is sufficiently large to meet the coalitional

demand amounting its worth v(S), as well as the desirable marginal benefit for

any nonmember of S. The theory on 1-convex n-person games has been well

developed [21]. The key feature of 1-convex n-person games is the geometri-

cally regular structure of its Core, composed as the convex hull of n extreme

points of which all the coordinates, except one, agree with the marginal ben-

efits of all, but one, players. Moreover, the center of gravity of the Core turns

out to coincide with the so-called Nucleolus of the 1-convex game. So, the pay-

off to player i according to the Nucleolus of 1-convex n-person games equals

bvi −
gv(N)

n for all i ∈ N . Particularly, the Nucleolus on the class of 1-convex

n-person games satisfies the mathematically attractive additivity property.

For any payoff vector x⃗ ∈ RN satisfying
∑

k∈N xk = v(N) as well as

xi ≤ bvi for all i ∈ N , it is simple to observe the validity of the Core constraint
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∑
k∈S xk ≥ v(S) whenever the gap of S weakly majorizes the gap of N , i.e.,

gv(S) ≥ gv(N). Consequently, for 1-convex n-person games v, the following

Core equivalence holds:

x⃗ ∈ Core(v) if and only if
∑
k∈N

xk = v(N), xi ≤ bvi for all i ∈ N

(5.1.2)

Definition 5.2. An n-person game v is said to be 2-convex if on the one
hand, the gap of the grand coalition N is weakly majorized by the gap of
every multi-person coalition S, and on the other, the concavity of the gap
function gv with respect to the sequential formation of the grand coalition N
by individuals up to size 1, whereas the remaining n− 1 players merge as one
syndicate to complete the sequential formation of N , i.e.,

gv(S) ≥ gv(N) for all S ⊆ N with |S| ≥ 2, and (5.1.3)

gv({j}) ≥ gv(N)− gv({i}) ≥ 0 for all i, j ∈ N , i ̸= j, or equivalently,

(5.1.4)

gv({j})+gv({i}) ≥ gv(N) ≥ gv({i}) for every pair i, j ∈ N of players.

(5.1.5)

In view of (5.1.3), for 2-convex n-person games v, the following Core equiv-

alence holds:

x⃗ ∈ Core(v) if and only if
∑
k∈N

xk = v(N), v({i}) ≤ xi ≤ bvi for all i ∈ N

(5.1.6)

Alternatively, for 2-convex n-person games, its Core coincides with a so-

called Core catcher associated with appropriately chosen lower- and upper

Core bounds. Our main goal is to exploit the Core equivalence (5.1.6) in

order to determine the Nucleolus based on bargaining ranges within the Core.

Example 5.1. Consider the zero-normalized 3-person game ⟨{1, 2, 3}, v⟩ of
which the characteristic function is given by v({1, 2}) = 6, v({1, 3}) = 7,
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v({2, 3}) = 8, and v(N) not yet specified.
In case the worth v(N) is small enough, for instance v(N) = 12, then the
marginal benefit vector b⃗v = (4, 5, 6), and so, its gap function gv is given by
gv({i}) = 4, 5, 6 for i = 1, 2, 3, respectively, whereas gv(S) = 3 otherwise. By
(5.1.1), the 3-person game v is 1-convex, but fails to be 2-convex, and its Core
is the convex hull of the three vertices (1, 5, 6), (4, 2, 6), (4, 5, 3). Further, the
Nucleolus coincides with the center (3, 4, 5) of gravity of the Core.
In case the worth v(N) is large enough, say v(N) = 15, then b⃗v = (7, 8, 9), and
so, gv({i}) = 7, 8, 9 for i = 1, 2, 3, respectively, whereas gv(S) = 9 otherwise.
By (5.1.5), the 3-person game v is 2-convex, but fails to be 1-convex, and its
Core is the convex hull of the five vertices (7, 0, 8), (6, 0, 9), (0, 6, 9), (0, 8, 7),
(7, 8, 0) (the latter with geometric multiplicity 2).
In summary, the 3-person game v turns out to be 1-convex iff 10.5 ≤ v(N) ≤ 13
and moreover, to be 2-convex iff v(N) ≥ 15. Appealing examples of 1-convex
games are discovered, like the library game together with a suitably chosen
basis [18] as well as the co-insurance game [17]. It is still an outstanding
challenge to search for appealing examples of 2-convex games.

5.2 The Nucleolus of 2-convex n-person games

The main purpose is to apply the geometric characterization for the intersec-

tion of the Pre-kernel with the Core as introduced by Maschler, Peleg, and

Shapley (1979, [43]).

Theorem 5.1. The Nucleolus of a 2-convex n-person game v is of the para-
metric form (5.2.3) or (5.2.4), a so-called constrained equal award rule, in-
corporating the constraints amounting a half of the individual gaps gv({k}),
k ∈ N . For instance, by (5.2.3), the payoff to any player i according to
the Nucleolus equals either the midpoint of its individual worth v({i}) and
its marginal benefit bvi , or its parametric shortage bvi − λ, whichever is more.
By (5.2.4), its payoff equals either the same midpoint, or its parametric gain
v({i}) + λ, whichever is less.

Proof. In view of the Core equivalence (5.1.6) for 2-convex games, the

largest amount that can be transferred from player i to another player j with

respect to a given Core allocation x⃗ ∈ Core(v) while remaining in the Core of

the game is either player’s i-th decrease amounting xi−v({i}), or player’s j-th
increase amounting bvj −xj , whichever is less. Hence, the largest transfer from
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i to j equals δvij(x⃗) = min

[
xi − v({i}), bvj − xj

]
. We are looking for Core

allocations x⃗ satisfying the equilibrium condition δvij(x⃗) = δvji(x⃗) for every pair

i, j ∈ N of players.

Define the vector y⃗ = (yk)k∈N ∈ RN by yk = bvk − xk for all k ∈ N . Note that∑
k∈N yk = gv(N) and the equilibrium conditions may be rewritten by

min

[
gv({i})− yi, yj

]
= min

[
gv({j})− yj , yi

]
or equivalently, (5.2.1)

yj +min

[
gv({i}), yi + yj

]
= yi +min

[
gv({j}), yi + yj

]
(5.2.2)

for every pair of players.

From (5.2.2), it follows that yj ≥ yi whenever gv({j}) ≥ gv({i}). In

fact, the system (5.2.1) of pairwise (non-linear) equations, together with the

adapted efficiency constraint
∑

k∈N yk = gv(N), is uniquely solvable [20] (page

47) and its unique solution is of the parametric form

yk = min

[
λ,

gv({k})
2

]
and so, xk = v({k})+max

[
gv({k})−λ,

gv({k})
2

]
(5.2.3)

for all k ∈ N , where the parameter λ ∈ R is determined by the efficient

constraints
∑

k∈N yk = gv(N) and
∑

k∈N xk = v(N). The latter solution

(5.2.3) applies only if 1
2 ·

∑
k∈N gv({k}) ≥ gv(N), otherwise for all k ∈ N

yk = max

[
gv({k})−λ,

gv({k})
2

]
and so, xk = v({k})+min

[
λ,

gv({k})
2

]
(5.2.4)

2

Remark 5.1. The non-void intersection of the two classes of 1-convex and 2-
convex n-person games is fully characterized by identical individual gaps such
that gv({k}) = gv(N) for all k ∈ N . In this setting, (5.2.3) applies, and the
parameter λ is determined through the slightly adapted efficiency constraint∑

k∈N
min[λ,

gv(N)

2
] = gv(N). Thus, yk = λ =

gv(N)

n
and so,
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the Nucleolus payoff equals xk = bvk − yk = bvk −
gv(N)

n for all k ∈ N , which is
in accordance with previous remarks involving the Nucleolus payoff vector x⃗.

Remark 5.2. In view of the Core equivalence (5.1.2) for 1-convex n-person
games v, the largest transfer from player i to another player j, while remaining
in the Core of the game, is fully determined by player’s j-th increase amounting
bvj − xj . That is, δvij(x⃗) = bvj − xj for all i, j ∈ N , i ̸= j. The equilibrium
condition δvij(x⃗) = δvji(x⃗), or equivalently, the system of linear equations bvj −
xj = bvi − xi for every pair i, j ∈ N of players, is easily solved by the unique

efficient payoff vector of which the coordinates are given by bvk−
gv(N)

n , k ∈ N .

Remark 5.3. In [41], the authors study the so-called class of compromise
stable games of which the Core agrees with a certain Core cover in the sense
of (5.1.6) by replacing the weak lower bound v({i}) by another sharp lower
bound amounting bvi − minS∋i g

v(S). Their approach to determine the Nu-
cleolus of compromise stable games is totally different and strongly based on
the study of (convex) bankruptcy games [41](Theorem 4.2, pages 497-498).
Our geometrical approach to determine the Nucleolus of compromise stable
applies once again, but is left to the reader. In fact, (5.2.1) applies once again,
replacing gv({i}) by minS∋i g

v(S).
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Chapter 6

A new characterization of the
pre-kernel for TU games
through its indirect function
and its application to
determine the Nucleolus for
1-convex and 2-convex games

ABSTRACT - In this chapter, the main goal is twofold. Thanks to

the so-called indirect function known as the dual representation of the

characteristic function of a coalitional TU game, we derive a new char-

acterization of the Pre-kernel of the coalitional game using the evalu-

ation of its indirect function on the tails of pairwise bargaining ranges

arising from a given payoff vector. Secondly, we study two subclasses

of coalitional games of which its indirect function has an explicit for-

mula and show the applicability of the determination of the Pre-kernel

(Nucleolus) for such types of games using the indirect function. Two

such subclasses of games concern the 1−convex and 2-convex n person

games.
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6.1 Introduction and Notions

As shown in [?] [17], certain practical problems such as co-insurance situations

and library situations can be modeled as a cooperative game in characteristic

function form. Formally, a cooperative game on player set N is a characteristic

function v : P(N) → R defined on P(N) satisfying v(∅) = 0. Here P(N)

denotes the power set of the finite player set N , given by P(N) = {S|S ⊆ N},
and shortly called a game v on N. In [42], the dual representation of cooperative

games based on Fenchel Moreau Conjugation has been introduced, with every

game v on N, there is associated the indirect function πv : RN → R, given by

πv(y⃗) = max
S⊆N

ev(S, y⃗) for all y⃗ = (yk)k∈N ∈ RN , (6.1.1)

The excess ev(S, y⃗) of a non-empty coalition S at the salary vector y⃗ in the

game v represents the net profit the (unique) employer would receive from

the selection of coalition S, assuming the members of S will produce, using

the resources that are available to the employer, a total amount of output the

monetary utility of which is measured by v(S), and the (possibly negative)

salary required by the player i amounts yi, i ∈ N . Write ev(∅, y⃗) = 0. In

the game theory setting, the efficient salary vectors of which all the excess are

non-positive, compose the multi-valued solution concept called Core, that is

Core(v) = {y⃗ ∈ RN |ev(N, y⃗) = 0, ev(S, y⃗) ≤ 0 for all S ⊆ N , S ̸= ∅},
(6.1.2)

According to [42], the indirect function πv : RN → R of a game v on N is a

non-increasing convex function which attains its minimum at level zero, i.e.,

miny⃗∈RN πv(y⃗) = 0.

In this chapter, we use indirect function to determine the Nucleolus for two

subclasses of games concerning 1−convex and 2−convex games [21] [16]. The

theory on 1−convex n-person games has been well developed by Theo Driessen.

The key feature of this kind of games is the geometrically regular structure of

its Core. For 2−convex games, its Core coincides with a so-called Core catcher

associated with appropriately chosen lower and upper Core bounds.
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6.2 The indirect function of 1-convex and 2-convex
n person games

Given a game (N, v), its corresponding benefits vector b⃗v = (bvi )i∈N is defined

by bvi = v(N)−v(N\{i}), i ∈ N . Note that the vector b⃗v is an upper bound for

Core allocations in that yi ≤ bvi for all i ∈ N , all y⃗ ∈ Core(v). In terms of the

characteristic function v, the 1-convexity property requires that, concerning

the division problem, the worth v(N) is sufficiently large to meet the coalitional

demand amounting its worth v(S), as well as the desirable marginal benefit

by any individual not belonging to coalition S. For notation sake, write z⃗(T )

instead of
∑
k∈T

zk for any coalition T ⊆ N and any vector z⃗ = (zk)k∈N ∈ RN ,

where z⃗(∅) = 0, and use y⃗ ≤ b⃗v instead of yi ≤ bvi for all i ∈ N .

Definition 6.1. A game v on N is said to be 1-convex if it holds∑
k∈N

bvk ≥ v(N) and v(N) ≥ v(S) +
∑

k∈N\S

bvk for all S ⊆ N , S ̸= ∅.

(6.2.1)

Example 6.1. Let the three-person game v on N = {1, 2, 3} be given by
v({1}) = v({2}) = 0, v({3}) = 1, v({1, 2}) = 4, v({1, 3}) = 6, v({2, 3}) = 7,
v(N) = 10. It is left to the reader to check the 1-convexity of this game using
the marginal benefit vector bv = (3, 4, 6). It turns out that the Core coincides
with the triangle with the three vertices (0, 4, 6), (3, 1, 6), (3, 4, 3). In fact,
(y1, y2, y3) ∈ Core(v) is equivalent to y1+y2+y3 = 10 and y1 ≤ 3, y2 ≤ 4, y3 ≤
6. Under the latter upper Core bound assumption y ≤ bv, the first part of
the following theorem reports that the level equation πv(y) = c for its indirect
function πv is solved by the hyperplane equation y1+ y2+ . . .+ yn = v(N)− c
provided c > 0. Here the larger the strictly positive level c, the smaller
v(N) − c. In case c = 0, then its level equation πv(y) = 0 is solved by any
hyperplane equation y1 + y2 + . . . + yn = d where the real number d ranges
from bv(N) to v(N). The lowest hyperplane with d = v(N) represents the
Core of the 1−convex game.

Theorem 6.1. Let v be a 1-convex game on N and we study the indirect
function of this game with respect to the following two types of vectors, given
y⃗ ∈ Rn.
Type 1: y⃗ ≤ b⃗v.
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Type 2: There exists a unique ℓ ∈ N with yℓ > bvℓ and yi ≤ bvi for all i ∈ N , i ̸=
ℓ. Then its indirect function πv : RN → R satisfies the following properties:

(i)πv(y⃗) = max

[
0, v(N)−

∑
k∈N

yk

]
for vectors of type 1.

(ii)πv(y⃗) = max

[
0, v(N\{ℓ})−

∑
k∈N\{ℓ}

yk

]

= max

[
0, v(N)−

∑
k∈N

yk + yℓ − bvℓ

]
for vectors of type 2.

Proof. (i) Let S ⊆ N , S ̸= ∅, and y⃗ ∈ RN with yi ≤ bvi for all i ∈ N .

From (6.2.1), we derive

v(S)− y⃗(S) = v(S)− y⃗(N) + y⃗(N\S)
≤ v(S)− y⃗(N) + b⃗v(N\S) ≤ v(N)− y⃗(N) (6.2.2)

Thus, the restriction of the indirect function πv to the comprehensive hull of

the marginal benefit vector b⃗v attains its maximum either for S = N or S = ∅.
(ii) For every y⃗ ∈ RN such that there exists a unique ℓ ∈ N with yℓ > bvℓ and

yi ≤ bvi for all i ∈ N , i ̸= ℓ, it holds that, on the one hand, v(S) − y⃗(S) ≤
v(N) − y⃗(N) for all S ⊆ N with ℓ ∈ S because the above chain (6.2.2) of

inequalities still holds due to ℓ ̸∈ N\S. For all S ⊆ N with ℓ ̸∈ S, it holds

v(S)− y⃗(S) = v(S)− y⃗(N) + yℓ + y⃗(N\(S ∪ {ℓ}))

≤ v(S)− y⃗(N) + yℓ + b⃗v(N\(S ∪ {ℓ}))

= v(S)− y⃗(N) + yℓ − bvℓ + b⃗v(N\S)

≤ v(N)− y⃗(N) + yℓ − bvℓ = v(N\{ℓ})− y⃗(N\{ℓ}).(6.2.3)

In this setting, the indirect function πv attains its maximum either for S = N ,

S = N\{ℓ} or S = ∅, but S = N cancels. 2

Corollary 6.1. For every 1-convex game v on N and the payoff vector y⃗ =
(yk)k∈N ∈ RN , it holds:

y⃗ ∈ Core(v) ⇔ y⃗(N) = v(N), πv(y⃗) = 0 ⇔ y⃗(N) = v(N), y⃗ ≤ b⃗v.
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The former if and only if implication is trivial, while the latter if and only

if implication is shown by the (partial) determination of the indirect function

for 1-convex games according to Theorem 6.1.

In the remainder of this section, we switch from 1-convex to 2-convex

games. In this framework, it is useful to introduce the so-called gap function

gv : P(N) → R of a game v on N, given by gv(S) = b⃗v(S)−v(S) for all S ⊆ N ,

S ̸= ∅, and gv(∅) = 0. In view of (6.2.1), a game v on N is 1-convex if and only

if the nonnegative gap function attains its minimum at the grand coalition,

i.e., 0 ≤ gv(N) ≤ gv(S) for all S ⊆ N , S ̸= ∅.

Definition 6.2. [21] A game v on N is said to be 2-convex if the following
two conditions hold:

gv({i})+gv({j}) ≥ gv(N) ≥ gv({i}) for any players i, j ∈ N , i ̸= j (6.2.4)

v(N) ≥ v(S) +
∑

k∈N\S

bvk for all S ⊆ N , |S| ≥ 2 (6.2.5)

For 2-convexity, the main condition (6.2.1) is kept except for singletons,

of which the gap is leveled below the gap of the grand coalition, whereas the

sum of two such gaps majorizes the gap of the grand coalition.

Theorem 6.2. Let v be a 2-convex game on N and we study the indirect
function of this game with respect to the following four types of vectors, given
y⃗ ∈ Rn.
Type 1: y⃗ ≤ b⃗v.
Type 2: There exists a unique ℓ ∈ N with yℓ > bvℓ ≥ v({ℓ}) and v({i}) ≤ yi ≤
bvi for all i ∈ N , i ̸= ℓ.
Type 3: There exists a unique j ∈ N with yj < v({j}) ≤ bvj and v({i}) ≤ yi ≤
bvi for all i ∈ N , i ̸= j.
Type 4: There exist unique j, ℓ ∈ N with yℓ > bvℓ ≥ v({ℓ}), yi ≤ bvi for all
i ∈ N , i ̸= ℓ, and yj < v({j}) ≤ bvj , yi ≥ v({i}) for all i ∈ N , i ̸= j. Then its
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indirect function πv : RN → R satisfies the following properties:

(i)πv(y⃗) = max

[
0, v(N)−

∑
k∈N

yk, (v({i})− yi)i∈N

]
for vectors of type 1.

(ii)πv(y⃗) = max

[
0, v(N\{ℓ})−

∑
k∈N\{ℓ}

yk

]

= max

[
0, v(N)−

∑
k∈N

yk + yℓ − bvℓ

]
for vectors of type 2.

(iii)πv(y⃗) = max

[
v(N)−

∑
k∈N

yk, v({j})− yj

]
for vectors of type 3.

(iv)πv(y⃗) = max

[
v(N\{ℓ})−

∑
k∈N\{ℓ}

yk, v({j})− yj

]

= max

[
v(N)−

∑
k∈N

yk + yℓ − bvℓ , v({j})− yj

]
for vectors of type 4.

The proof is similar to the previous proof of Theorem(6.1) and is omitted

here.

Corollary 6.2. Let v be a 2-convex game on N and let y⃗ = (yk)k∈N ∈ Rn.
Then y⃗ ∈ Core(v) iff y⃗(N) = v(N) and πv(y⃗) = 0 iff y⃗(N) = v(N) and
v({i}) ≤ yi ≤ bvi for all i ∈ N .

The former if and only if statement is general and the latter is shown by

the structure of the indirect function.

6.3 Solving the Pre-kernel by means of the indirect
function

In this section, we characterize the Pre-kernel of a game on N by the evaluation

of the indirect function of the game at pairwise bargaining ranges arising from

the payoff vector involved. Formally, for every pair of players i, j ∈ N, i ̸= j,

the surplus svij(y⃗) of player i against player j at the (salary) vector y⃗ in the

game v on N is given by the maximal excess among coalitions containing player

i, but not containing player j. That is,
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Definition 6.3. Let v be a game on N and y⃗ = (yk)k∈N ∈ RN .

(i) For every pair of players i, j ∈ N , i ̸= j, the surplus svij(y⃗) of player i
against player j at the (salary) vector y⃗ in the game v is given by

svij(y⃗) = max

[
ev(S, y⃗)| S ⊆ N, i ∈ S, j ̸∈ S

]
(6.3.1)

(ii) The Pre-kernel K∗(v) of the game v consist of efficient salary vectors of
which all the pairwise surpluses are in equilibrium, that is [43]

K∗(v) = {y⃗ ∈ RN |ev(N, y⃗) = 0, svij(y⃗) = svji(y⃗) for all i, j ∈ N , i ̸= j.}
(6.3.2)

For the alternative description of the Pre-kernel, with every payoff vector

x⃗ = (xk)k∈N ∈ RN , every pair of players i, j ∈ N , i ̸= j, and every transfer

amount δ ≥ 0 from player i to player j, there is associated the modified payoff

vector x⃗ijδ = (x⃗ijδk )k∈N ∈ RN defined by xijδi = xi − δ, xijδj = xj + δ, and

xijδk = xk for all k ∈ N\{i, j}.

Theorem 6.3. Let v be a game on N and x⃗ = (xk)k∈N ∈ RN satisfying the
efficiency principle x⃗(N) = v(N).

(i) For every pair of players i, j ∈ N , i ̸= j, the indirect function πv : RN →
R satisfies πv(x⃗ijδ) = svij(x⃗) + δ, provided δ ≥ 0 is sufficiently large.

(ii) x⃗ ∈ K∗(v) if and only if the evaluation of the pairwise bargaining ranges
arising from x⃗ through the indirect function are in equilibrium, that is,
for every pair of players i, j ∈ N , i ̸= j, the indirect function satisfies
πv(x⃗ijδ) = πv(x⃗jiδ) for δ sufficiently large.

Proof. Fix the pair of players i, j ∈ N , i ̸= j. Firstly, we claim that

coalitions not containing player i or containing player j are redundant for

maximizing the excesses at the modified payoff vector x⃗ijδ, provided the trans-

fer amount δ ≥ 0 is sufficiently large. For that purpose, for all coalitions

S ⊆ N\{i}, T ⊆ N\{j}, note the following two equivalences:

v(S∪{i})−
∑

k∈S∪{i}

xijδk ≥ v(S)−
∑
k∈S

xijδk iff δ ≥ v(S)−v(S∪{i})+xi (6.3.3)
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v(T ∪{j})−
∑

k∈T∪{j}

xijδk ≤ v(T )−
∑
k∈T

xijδk iff δ ≥ v(T ∪{j})−v(T )−xj

(6.3.4)

From (6.1.1) and (6.3.3)–(6.3.4) respectively, we derive that

πv(x⃗ijδ) = max
S⊆N

[
v(S)−

∑
k∈S

xijδk

]
= max

S⊆N,
i∈S, j ̸∈S

[
v(S)−

∑
k∈S

xijδk

]
(6.3.5)

where the choice of δ can be improved by

δ ≥ max

[
max

S⊆N\{i}
|v(S∪{i})−v(S)−xi|, max

T⊆N\{j}
|v(T ∪{j})−v(T )−xj |

]
because of |α| ≥ α as well as |α| ≥ −α for all α ∈ R. Finally, from (6.3.5),

xijδi = xi − δ, and (6.3.1) respectively, we conclude that, for δ ≥ 0 sufficiently

large, the following chain of equalities holds:

πv(x⃗ijδ) = max
S⊆N,

i∈S, j ̸∈S

[
v(S)−

∑
k∈S

xijδk

]
= max

S⊆N,
i∈S, j ̸∈S

[
v(S)−

∑
k∈S

xk

]
+δ = svij(x⃗)+δ

This proves part (i). Together with (6.3.2), part (ii) follows immediately. 2

6.4 Remarks about determination of the Nucleolus

The aim of this section is to illustrate the significant role of the indirect func-

tion for two classes of games (1-convex and 2-convex) to determine its Nucle-

olus through a uniform approach replacing its original computation approach.

Under these circumstances, the Nucleolus belongs always to the Pre-kernel,

and so it is sufficient to solve the system for its unique solution. Thus we

avoid the formal definition of the Nucleolus.

Remark 6.1. Suppose the game v on N is 1-convex. For every payoff vector
x⃗ = (xk)k∈N ∈ RN satisfying the efficiency principle x⃗(N) = v(N) as well
as x⃗ ≤ b⃗v, and for every pair of players i, j ∈ N , i ̸= j, the evaluation
of the indirect function πv : RN → R at the tail of the bargaining range
described by the corresponding modified payoff vector x⃗ijδ is in accordance
with Theorem 6.1(i)–(ii) dependent on the size of its j-th component x⃗ijδj =
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xj + δ in comparison to player j-th marginal benefit bvj . From the explicit
formula for the indirect function of 1-convex games, we conclude the following:

πv(x⃗ijδ) = 0 if xijδj ≤ bvj , that is δ ≤ bvj − xj

πv(x⃗ijδ) = max

[
0, xijδj − bvj

]
= xj + δ − bvj > 0 otherwise

For sufficiently large δ, the equilibrium condition πv(x⃗ijδ) = πv(x⃗jiδ) is
met if and only if xj + δ − bvj = xi + δ − bvi , that is xj − bvj = xi − bvi for all
i ̸= j. Together with the efficiency principle x⃗(N) = v(N), the unique solution
of this system of linear equations is given by

xi = bvi −
α

n
for all i ∈ N , where α = b⃗v(N)− v(N) ≥ 0

The latter solution is known as the Nucleolus and turns out to coincide with
the gravity of the Core being the convex hull of n extreme points of the form
b⃗v − α · e⃗i, i ∈ N . Here {e⃗1, e⃗2, . . . , e⃗n} denotes the standard basis of Rn.

We consider once again the 3-person game of the Example 6.1 in order to

illustrate Remark 6.1 and Theorem 6.3. Let payoff vector x⃗ satisfy x⃗(N) =

v(N) = 10 as well as x⃗ ≤ b⃗v = (3, 4, 6). From Remark 6.1, we obtain that

πv(x⃗ijδ) = xj+δ−bvj , π
v(x⃗jiδ) = xi+δ−bvi for sufficiently large δ. By Theorem

6.3(ii), it holds that x⃗ ∈ K∗(v) iff πv(x⃗ijδ) = πv(x⃗jiδ) for δ sufficiently large.

Thus, x⃗ ∈ K∗(v) iff xj+δ−bvj = xi+δ−bvi and due to efficiency, the Nucleolus

is given by x⃗ = (2, 3, 5).

Remark 6.2. Suppose the game v on N is 2-convex. From the explicit formula
for the indirect function of 2-convex n-person games, as presented in Theorem
6.2(iv), we conclude that, for δ ≥ 0 sufficiently large, the equilibrium condition
πv(x⃗jℓδ) = πv(x⃗ℓjδ) reduces to the following system of equations: for every pair
of players j, ℓ ∈ N , j ̸= ℓ,

min

[
bvℓ − xℓ, xj − v({j})

]
= min

[
bvj − xj , xℓ − v({ℓ})

]
As shown in [16], the unique solution is of the parametric form xi = v({i}) +

min

[
µ,

bvi −v({i})
2

]
for all i ∈ N , where the parameter µ ∈ R is determined

by the efficiency condition x⃗(N) = v(N).
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Chapter 7

The Indirect Function of
Compromise stable TU
Games and Clan TU Games
as a tool for the
determination of its Nucleolus
and Pre-kernel

ABSTRACT - In this chapter, we illustrate that the so-called indirect

function of a cooperative game in characteristic function form is ap-

plicable to determine the Nucleolus for a subclass of coalitional games

called compromise stable TU games. In accordance with the Fenchel-

Moreau theory on conjugate functions, the indirect function is known

as the dual representation of the characteristic function of the coali-

tional game. The key feature of compromise stable TU games is the

coincidence of its Core with a box prescribed by certain upper and lower

Core bounds. For the purpose of the determination of the Nucleolus,

we benefit from the interrelationship between the indirect function and

the Pre-kernel of coalitional TU games. The class of compromise sta-

ble TU games contains the subclasses of clan games, big boss games, 1-

and 2-convex n person TU games. As an adjunct, this chapter reports

the indirect function of clan games for the purpose to determine its

Nucleolus.
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7.1 Compromise stable TU Games

Fix the finite player set N and its power set P(N) = {S|S ⊆ N} consisting

of all the subsets of N (including the empty set ∅). A cooperative transferable

utility game, or TU game for short, is given by the so-called characteristic

function v : P(N) → R satisfying v(∅) = 0. That is, the TU game v assigns to

each coalition S ⊆ N its worth v(S) amounting the monetary benefits achieved

by cooperation among the members of S.

In the framework of set-valued solution concepts for TU games, we aim to

determine the Pre-kernel for a special subclass of TU games called compro-

mise stable TU games [41] using a new mathematical tool called the indi-

rect function [42]. The economic interpretation of this function which can

be found in definition 7.1 is the following. An employer has to select among

the players those who will provide the maximum profit to him. In case the

non-empty coalition S ⊆ N is selected, then its members will provide, using

the resources that are available to the employer, a total amount of output the

monetary utility of which is represented by the worth v(S). The expression

ev(S, y⃗) = v(S)−
∑

k∈S yk, called the excess of coalition S at the payoff vector

y⃗ = (yk)k∈N ∈ RN in the TU game v, is thus the net profit the employer

would obtain from the coalition S if the (possibly negative) salary required

by the player i amounts yi, i ∈ N . Write ev(∅, y⃗) = 0. In accordance with

the Fenchel-Moreau theory on conjugate functions, the indirect function pro-

vides a dual representation to TU games in the sense that indirect functions

provide the same information as characteristic functions because a simple for-

mula permits to recover any characteristic function from its associated indirect

function.

Definition 7.1. [42] With every TU game v : P(N) → R, there is associated
the indirect function πv : RN → R, given by

πv(y⃗) = max
S⊆N

ev(S, y⃗) = max
S⊆N

[
v(S)−

∑
k∈S

yk

]
for all y⃗ = (yk)k∈N ∈ RN .

(7.1.1)

Definition 7.2. The Core(v) of the TU game v : P(N) → R consists of
efficient salary vectors of which all the excesses are non-positive, that is

Core(v) = {y⃗ ∈ RN |ev(N, y⃗) = 0 and ev(S, y⃗) ≤ 0 for all S $ N , S ̸= ∅}.
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(7.1.2)

Equivalently, y⃗ ∈ Core(v) if and only if ev(N, y⃗) = 0 and πv(y⃗) = 0.

Concerning the definition of compromise stable TU games, we follow the

notation as used in [41].

Definition 7.3. Let v : P(N) → R be a TU game.

(i) The utopia demand vector M⃗v = (Mv
k )k∈N ∈ RN is given by Mv

i =
v(N)− v(N\{i}) for all i ∈ N .

(ii) The minimum right vector m⃗v = (mv
k)k∈N ∈ RN is given by

mv
i = max

[
v(S)−

∑
k∈S\{i}

Mv
k | S ⊆ N, i ∈ S

]
for all i ∈ N.

(7.1.3)

(iii) The Core cover CC(v) ⊆ RN consist of efficient payoff vectors represent-
ing compromises between utopia demands as well as minimum rights,
that is

CC(v) = {y⃗ ∈ RN |ev(N, y⃗) = 0 and mv
i ≤ yi ≤ Mv

i for all i ∈ N}.
(7.1.4)

(iv) The TU game v is called compromise stable if CC(v) = Core(v).

We remark that the inclusion Core(v) ⊆ CC(v) holds in general because

the utopia demand vector M⃗v and the minimum right vector m⃗v are well-

known to be an upper and lower bound for the Core, respectively. As a first

main contribution, we provide an alternative proof of the following character-

ization of compromise stable TU games. For any non-empty coalition T ⊆ N

and any payoff vector z⃗ = (zk)k∈N ∈ RN , write z⃗(T ) =
∑
k∈T

zk, where z⃗(∅) = 0.

Theorem 7.1. [41] A TU game v : P(N) → R is compromise stable if and
only if

v(S) ≤ max

[∑
k∈S

mv
k, v(N)−

∑
k∈N\S

Mv
k

]
for all S ⊆ N , S ̸= ∅. (7.1.5)
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Alternative proof. (i) Suppose (7.1.5) holds. We prove the coincidence

CC(v) = Core(v). It suffices to prove the inclusion CC(v) ⊆ Core(v). Sup-

pose y⃗ = (yk)k∈N ∈ CC(v). Then mv
i ≤ yi ≤ Mv

i for all i ∈ N . Let S ⊆ N ,

S ̸= ∅. Clearly, y⃗(S) ≥ m⃗v(S), whereas

y⃗(S) = v(N)−y⃗(N\S) ≥ v(N)−M⃗v(N\S). Hence, y⃗(S) ≥ max

[
m⃗v(S), v(N)−

M⃗v(N\S)
]
. Due to (7.1.5), y⃗(S) ≥ v(S) for all S ⊆ N , S ̸= ∅, and so,

y⃗ ∈ Core(v), provided y⃗ ∈ CC(v).

(ii) In order to prove the converse statement, suppose the coincidence CC(v) =

Core(v). We aim to prove (7.1.5). Let S ⊆ N , S ̸= ∅. We distinguish two

cases.

Case 1. Assume v(N) − M⃗v(N\S) < m⃗v(S). We prove v(S) ≤ m⃗v(S). For

that purpose, construct the efficient payoff vector y⃗ = (yk)k∈N ∈ RN such that

yi = mv
i for all i ∈ S and yi = mv

i +
v(N)−m⃗v(N)

(M⃗v−m⃗v)(N\S)
· (Mv

i −mv
i ) for all i ∈ N\S.

Then mv
i ≤ yi ≤ Mv

i for all i ∈ N\S due to our assumption. So, y⃗ ∈ CC(v)

and so, y⃗ ∈ Core(v), Thus, y⃗(S) ≥ v(S) or equivalently, m⃗v(S) ≥ v(S).

Case 2. Assume v(N) − M⃗v(N\S) ≥ m⃗v(S). We prove v(S) ≤ v(N) −
M⃗v(N\S). We distinguish two subcases. Put gv(N) = M⃗v(N)− v(N).

Subcase 1. Suppose there exists at least a player i ∈ S with Mv
i − mv

i ≥
gv(N). Construct the efficient payoff vector y⃗ = (yk)k∈N ∈ RN such that

yi = Mv
i − gv(N) and yj = Mv

j for all j ∈ N\{i}. Then mv
j ≤ yj ≤ Mv

j

for all j ∈ N . So, y⃗ ∈ CC(v) and so, y⃗ ∈ Core(v). Thus, y⃗(S) ≥ v(S) or

equivalently, v(S) ≤ M⃗v(S)− gv(N) = v(N)− M⃗v(N\S).
Subcase 2. Suppose Mv

i −mv
i < gv(N) for all i ∈ S. Without loss of gener-

ality, write S = {i1, i2, . . . , is} such that Mv
i1
− mv

i1
≤ Mv

i2
− mv

i2
≤ . . . . . . ≤

Mv
is
−mv

is
. Then there exists 2 ≤ t ≤ s such that

t−1∑
k=1

[
Mv

ik
−mv

ik

]
< gv(N) and

t∑
k=1

[
Mv

ik
−mv

ik

]
≥ gv(N).

Construct the efficient payoff vector y⃗ = (yk)k∈N ∈ RN such that yi = Mv
i

for all i ∈ N\S, and yik = mv
ik

for all ik ∈ S, k < t and yik = Mv
ik

for all

ik ∈ S, k > t, and yit = Mv
it
+

t−1∑
k=1

[
Mv

ik
−mv

ik

]
− gv(N). Then mv

j ≤ yj ≤ Mv
j

for all j ∈ N . So, y⃗ ∈ CC(v) and so, y⃗ ∈ Core(v). Thus, y⃗(S) ≥ v(S) or

equivalently, v(S) ≤ M⃗v(S)− gv(N) = v(N)− M⃗v(N\S). This completes the
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alternative proof. 2

Remark 7.1. With every TU game v : P(N) → R, there is associated its
gap function gv : P(N) → R defined by gv(S) = M⃗v(S)− v(S) for all S ⊆ N ,
where gv(∅) = 0. An adapted version of (7.1.5) is well-known as the so-called
1-convexity constraint as follows:

v(S) ≤ v(N)−M⃗v(N\S) or equivalently, gv(N) ≤ gv(S) for all S ⊆ N , S ̸= ∅
(7.1.6)

In words, the TU game v is said to be 1-convex if its corresponding (non-
negative) gap function gv attains its minimum at the grand coalition. Clearly,
the class of compromise stable TU games contains the subclass of 1-convex
n-person games [21], [14], as well as the 2-convex n-person games [21], [16],
and the big boss and clan games [46], [50], [3].

Further, from (7.1.3), we deduce that Mv
i −mv

i = min

[
gv(S)| S ⊆ N, i ∈

S

]
for all i ∈ N . Thus, mv

i ≤ Mv
i if and only if gv(S) ≥ 0 for all S ⊆ N with

i ∈ S. Particularly, m⃗v ≤ M⃗v if and only if gv(S) ≥ 0 for all S ⊆ N , S ̸= ∅.
Throughout the next section we tacitly assume a non-negative gap function.

7.2 The indirect function as a tool for the determi-
nation of the Nucleolus of compromise stable
TU games

Theorem 7.2. Let the TU game v : P(N) → R be compromise stable. Then
its indirect function πv : RN → R satisfies the following properties:

(i) πv(y⃗) = max

[
0, v(N) −

∑
k∈N

yk

]
for all y⃗ = (yk)k∈N ∈ RN with

m⃗v ≤ y⃗ ≤ M⃗v.

(ii) For all y⃗ = (yk)k∈N ∈ RN such that there exist unique i, j ∈ N with
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yi < mv
i , yj > Mv

j , and mv
k ≤ yk ≤ Mv

k for all k ∈ N\{i, j},

πv(y⃗) = max

[
mv

i − yi, v(N\{j})−
∑

k∈N\{j}

yk

]
(7.2.1)

= max

[
mv

i − yi, v(N)−
∑
k∈N

yk + yj −Mv
j

]
(7.2.2)

(iii) With any efficient payoff vector x⃗ = (xk)k∈N ∈ RN satisfying m⃗v ≤ x⃗ ≤
M⃗v, and any pair i, j ∈ N of players, and any transfer δ ≥ 0 from i to
j, there is associated the adapted payoff vector x⃗ijδ = (xijδk )k∈N ∈ RN

given by xijδi = xi − δ, xijδj = xj + δ, and xijδk = xk for all k ∈ N\{i, j}.
Then, for δ ≥ 0 sufficiently large, it holds

πv(x⃗ijδ) = δ+max

[
mv

i − xi, xj −Mv
j

]
for all i, j ∈ N , i ̸= j.

(7.2.3)

(iv) For δ ≥ 0 sufficiently large, the pairwise equilibrium condition πv(x⃗ijδ) =
πv(x⃗jiδ) is equivalent to

min

[
xi−mv

i , Mv
j −xj

]
= min

[
xj−mv

j , Mv
i −xi

]
for all i, j ∈ N , i ̸= j.

(7.2.4)

Proof. (i) From Theorem 7.1 we derive that for every vector y⃗ ∈ RN with

m⃗v ≤ y⃗ ≤ M⃗v and every coalition S ⊆ N , S ̸= N , S ̸= ∅,

v(S)− y⃗(S) ≤ max

[
(m⃗v − y⃗)(S), v(N)− y⃗(N) + (y⃗ − M⃗v)(N\S)

]

≤ max

[
0, v(N)− y⃗(N)

]
and so,

πv(y⃗) = max

[
0, v(N)− y⃗(N)

]
for all m⃗v ≤ y⃗ ≤ M⃗v.

This completes the proof of part (i).

In order to prove part (ii), let y⃗ = (yk)k∈N ∈ RN be such that there exist
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i, j ∈ N with yi < mv
i , yj > Mv

j , and mv
k ≤ yk ≤ Mv

k for all k ∈ N\{i, j}. In

order to study the excesses ev(S, y⃗), S ⊆ N , S ̸= N , S ̸= ∅, we distinguish

three cases.

Case 1. Assume m⃗v(S) ≤ v(N) − M⃗v(N\S). Then it holds v(S) ≤ v(N) −
M⃗v(N\S) and so,

v(S)− y⃗(S) ≤ v(N)− M⃗v(N\S)− y⃗(S) = v(N)− y⃗(N) + (y⃗ − M⃗v)(N\S)

≤ v(N)− y⃗(N) + (yj −Mv
j ) = v(N\{j})− y⃗(N\{j}) (7.2.5)

By (7.2.5), ev(S, y⃗) ≤ ev(N\{j}, y⃗) for all S ⊆ N with m⃗v(S) ≤ v(N) −
M⃗v(N\S).
Case 2. Assume m⃗v(S) > v(N) − M⃗v(N\S). Then it holds v(S) ≤ m⃗v(S).

We distinguish two subcases.

Subcase 1. Assume i ̸∈ S. Then we derive v(S)− y⃗(S) ≤ (m⃗v − y⃗)(S) ≤ 0.

Subcase 2. Assume i ∈ S. Then we derive v(S) − y⃗(S) ≤ (m⃗v − y⃗)(S) ≤
mv

i − yi.

In summary, ev(S, y⃗) ≤ mv
i −yi for all S ⊆ N with m⃗v(S) > v(N)−M⃗v(N\S).

Particularly, ev({i}, y⃗) = v({i}) − yi ≤ mv
i − yi. Notice that mv

i ≥ v(N) −
M⃗v(N\{i}) because of Mv

i −mv
i ≤ gv(N). Due to the forthcoming remark 7.2,

we claim, without loss of generality, that mv
i − yi equals the excess ev({i}, y⃗).

Hence, (7.2.1) holds, or equivalently, (7.2.2). As a direct consequence, (7.2.3)–

(7.2.4) hold. 2

Remark 7.2. Whenever mv
i ̸= v({i}), the latter proof of Theorem 7.2 has

to be adapted by means of a slight change of the worth of player i without
changing the Core and Nucleolus concept. Formally, with a TU game v :
P(N) → R and a fixed player i ∈ N , there is associated the TU game w :
P(N) → R given by w({i}) = mv

i and w(S) = v(S) for all S ⊆ N , S ̸= {i}.
Clearly, M⃗w = M⃗v as well as m⃗w = m⃗v. Moreover, by (7.1.2), both games
possess the same Core because mv

i ≥ v({i}) as well as m⃗v represents a lower
bound for Core(v). Consequently, the intersection of the Core with the Pre-
kernel is the same for both games [43] and for the classes under consideration,
it follows from the uniqueness part that both games have the same Nucleolus.
Finally, by Theorem 7.1, if the game v is compromise stable, then the game

w is compromise stable too: w({i}) = mv
i = mw

i ≤ max

[
mw

i , w(N) −
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M⃗w(N\{i})
]
, and for all S ⊆ N , S ̸= ∅, S ̸= {i},

w(S) = v(S) ≤ max

[
m⃗v(N), v(N)− M⃗v(N\S)

]
= max

[
m⃗w(N), w(N)− M⃗w(N\S)

]

Without going into details [45], [26], we state that the pairwise equilibrium

conditions πv(x⃗ijδ) = πv(x⃗jiδ) for all pairs i, j ∈ N of players and for δ ≥ 0

sufficiently large, fully determine the so-called Pre-kernel of the TU game

v [43]. As a matter of fact, the set of efficient solutions of the non-linear

system of equations (7.2.4) is unique and it is a so-called constrained equal

award rule of the parametric form

xi = mv
i +max

[
Mv

i −mv
i − λ,

Mv
i −mv

i

2

]
for all i ∈ N, (7.2.6)

where the parameter λ ∈ R is determined by the efficiency constraint x⃗(N) =

v(N). This unique solution within the Pre-kernel is well-known as the Nu-

cleolus of the TU game v. In [41], the approach to determine the Nucleolus

of compromise stable TU games is totally different and strongly based on the

study of (convex) bankruptcy games [41] (Theorem 4.2, pages 497-498).

7.3 The indirect function and Nucleolus of clan TU
games

Definition 7.4. [50], [46], [3]
An n-person TU game v : P(N) → R is said to be a clan game if Mv

i ≥ v({i})
for all i ∈ N and there exists a coalition T ⊆ N , called the clan, such that
v(S) = 0 whenever T ̸⊆ S and

v(S) ≤ v(N)− M⃗v(N\S) for all S ⊆ N , S ̸= ∅, with T ⊆ S (7.3.1)

A clan game v with an empty clan reduces to an 1-convex game, provided
gv(N) ≥ 0. A clan game with the clan to be a singleton is known as a big
boss game.
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Throughout this section we suppose that the clan T consists of at least

two players.

Theorem 7.3. Let the n-person TU game v : P(N) → R be a clan game,
Then its indirect function πv : RN → R satisfies the following properties:

(i) πv(y⃗) = max

[
0, v(N) −

∑
k∈N

yk

]
for all y⃗ = (yk)k∈N ∈ RN with

yi ≥ 0 for all i ∈ N and yi ≤ Mv
i for all i ∈ N\T .

(ii) πv(y⃗) = max

[
0, v(N\{ℓ}) −

∑
k∈N\{ℓ}

yk

]
= max

[
0, v(N) −

∑
k∈N

yk +

yℓ − Mv
ℓ

]
for all y⃗ = (yk)k∈N ∈ RN such that there exists a unique

ℓ ∈ N\T with yℓ > Mv
ℓ ≥ 0, yi ≤ Mv

i for all i ∈ N\T , i ̸= ℓ, and yi ≥ 0
for all i ∈ N .

(iii) πv(y⃗) = max

[
−yℓ, v(N) −

∑
k∈N

yk

]
for all y⃗ = (yk)k∈N ∈ RN such

that there exists a unique ℓ ∈ N with yℓ < 0, yi ≥ 0 for all i ∈ N\{ℓ},
and yi ≤ Mv

i for all i ∈ N\T .

(iv) πv(y⃗) = max

[
−yj , v(N\{ℓ})−

∑
k∈N\{ℓ}

yk

]
= max

[
−yj , v(N)−

∑
k∈N

yk+

yℓ−Mv
ℓ

]
for all y⃗ = (yk)k∈N ∈ RN such that there exist unique j ∈ N ,

ℓ ∈ N\T with yj < 0, yi ≥ 0 for all i ∈ N\{j}, and yℓ > Mv
ℓ ≥ 0,

yi ≤ Mv
i for all i ∈ N\T , i ̸= ℓ.

Proof. Let y⃗ = (yk)k∈N ∈ RN .

(i) Suppose that yi ≥ 0 for all i ∈ N and yi ≤ Mv
i for all i ∈ N\T . We

distinguish two types of coalitions S ⊆ N , S ̸= ∅. In case T ̸⊆ S, then

v(S)− y⃗(S) = −y⃗(S) ≤ 0. In case T ⊆ S, then we derive from (7.3.1),

v(S)− y⃗(S) ≤ v(N)− M⃗v(N\S)− y⃗(S)

= v(N)− y⃗(N) + (y⃗ − M⃗v)(N\S) ≤ v(N)− y⃗(N). (7.3.2)

This proves part (i). In order to prove part (ii), suppose that there exists a

unique ℓ ∈ N\T with yℓ > Mv
ℓ ≥ 0, yi ≤ Mv

i for all i ∈ N\T , i ̸= ℓ, and

yi ≥ 0 for all i ∈ N . We distinguish three types of coalitions S ⊆ N , S ̸= ∅.
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In case T ̸⊆ S, then v(S)− y⃗(S) = −y⃗(S) ≤ 0. In case T ⊆ S, together with

ℓ ∈ S, then v(S) − y⃗(S) ≤ v(N) − y⃗(N) as shown in (7.3.2). In case T ⊆ S,

together with ℓ ̸∈ S, then we derive from (7.3.1)

v(S)− y⃗(S) = v(S)− y⃗(N) + yl + y⃗(N\(S ∪ {l}))

≤ v(S)− y⃗(N) + yl + M⃗v(N\(S ∪ {l}))

= v(S)− y⃗(N) + yℓ −Mv
l + M⃗v(N\S)

≤ v(N)− y⃗(N) + yl −Mv
l = v(N\{l})− y⃗(N\{l}).(7.3.3)

In this setting, the indirect function πv attains its maximum either for S = N ,

S = N\{ℓ} or S = ∅, but S = N cancels. The similar proof of part (iii) is

omitted here.

(iv) Suppose that there exist unique j ∈ N , ℓ ∈ N\T with yj < 0, yi ≥ 0

for all i ∈ N\{j}, and yℓ > Mv
ℓ ≥ 0, yi ≤ Mv

i for all i ∈ N\T , i ̸= ℓ. We

distinguish three types of coalitions S ⊆ N , S ̸= ∅. In case T ̸⊆ S, then

v(S)− y⃗(S) = −y⃗(S) ≤ −yj . In case T ⊆ S, the proof proceeds similar to the

proof of part (ii) and is omitted too. 2

Corollary 7.1. For every n-person clan game v : P(N) → R, with clan T ,
the following three statements concerning a payoff vector y⃗ = (yk)k∈N ∈ RN

are equivalent.

(i) y⃗ ∈ Core(v), i.e., y⃗(N) = v(N) and y⃗(S) ≥ v(S) for all
S ⊆ N , S ̸= ∅

(ii) y⃗(N) = v(N) and πv(y⃗) = 0

(iii) y⃗(N) = v(N) and yi ≥ 0 for all i ∈ N and yi ≤ Mv
i for all

i ∈ N\T

Theorem 7.4. Let the n-person TU game v : P(N) → R be a clan game
with clan T . For δ ≥ 0 sufficiently large, the pairwise equilibrium conditions
πv(x⃗ijδ) = πv(x⃗jiδ) for all pairs i, j ∈ N of players reduce to the following
system of equations:
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Case Pairwise equilibrium equation πv(x⃗ijδ) = πv(x⃗jiδ)

i ∈ T , j ∈ T , max

[
−(xi − δ), 0

]
= max

[
−(xj − δ), 0

]
i ̸∈ T , j ∈ T ,max

[
−(xi − δ), 0

]
= max

[
−(xj − δ), (xi + δ)−Mv

i

]
i ̸∈ T , j ̸∈ T , max

[
−(xi − δ), (xj + δ)−Mv

j

]
= max

[
−(xj − δ), (xi + δ)−Mv

i

]

Case Resulting pairwise equation for x⃗ = (xk)k∈N ∈ RN

i ∈ T , j ∈ T , xi = xj

i ̸∈ T , j ∈ T , xi = min

[
xj , Mv

i − xi

]
i ̸∈ T , j ̸∈ T , min

[
xi, Mv

j − xj

]
= min

[
xj , Mv

i − xi

]
The proof follows immediately by explicit formula for the indirect function

of clan games, as presented in Theorem 7.3 (ii)–(iv).

In summary, the unique solution is a so-called constrained equal reward rule

of the form xi = λ for all i ∈ T and xi = min

[
λ,

bvi
2

]
for all i ∈ N\T , where

the parameter λ ∈ R is determined by the efficiency condition x⃗(N) = v(N).

Further, the indirect function is a helpful tool for the determination of the

Nucleolus for the subclasses of big boss games as well as 1-convex and 2-convex

n-person games [26], [16].



Chapter 8

Interaction between Dutch
Soccer Teams and Fans:
A mathematical analysis
through Cooperative game
theory

ABSTRACT - In this chapter, we model the interaction between soccer

teams and their potential fans as a cooperative cost game based on the

annual voluntary sponsorships of fans in order to validate their fan

registration in a central database, inspired by the first lustrum of the

Club Positioning Matrix (CPM) for professional Dutch soccer teams.

The game theoretic approach aims to show that the so-called Nucleolus

of the suitably chosen fan data cost game agrees with the deviations of

bi, i ∈ N , from their average, where bi represents the total budget of

sponsorships of fans whose unique favorite soccer team is i.

89
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8.1 Club Positioning Matrix (CPM) of professional
Dutch soccer

Five years CPM. The first lustrum of the (Dutch) “Eredivisie Effectenbeurs”

is a fact. At the initiative of the eighteen professional teams in the Dutch

soccer league called “Eredivisie”, the first CPM research has been carried out

October 2006 by one of the German leading research and consultancy com-

panies in international sport business (i.e., marketing and sponsoring) called

“Sport+Markt” (www.sportundmarkt.com). October 2009 the fourth CPM

research involved 4.500 participants randomly selected from the whole Dutch

population (with the common feature to be a fan of soccer). Since these soc-

cer teams were not satisfied at all by the point of time October, the fifth

CPM research edition has been carried out among 4.500 participants in two

stages, namely August 2010 at the beginning of the soccer season and Jan-

uary 2011 during the soccer winter break. The end of March 2011, the CPM

2011 scores have been sent to the professional Dutch soccer teams and pub-

lished exclusively in the weekly Dutch soccer magazine “Voetbal International”

(www.vi.nl). 1

The CPM 2011 scores have direct consequences for the participating soccer

teams since the allocation of media (television and broadcast) money among

all the soccer teams is based equally on both the annual sport results and the

average CPM scores over three years. The more CPM points, the more media

money. During one half of a century, the annual sport results were domi-

nated fully by the triple PSV Eindhoven (last Dutch championships in 2000,

2001, 2003, 2005, 2006, 2007, 2008), Ajax Amsterdam (2002, 2004, 2011), and

Feyenoord Rotterdam (1974, 1984, 1993, 1999), with exceptions caused by

DWS in 1964, AZ’67 Alkmaar in 1981 as well as 2009, and FC Twente En-

schede in 2010. The top five of the last three annual sport results is as follows

(R = ranking):

1The CPM 2011 scores have been published in the weekly soccer magazine “Voetbal
International” VI (in Dutch), Volume 46, March 30, 2011, nr. 13, pp. 116–121, co-authored
by Iwan van Duren and Tom Knipping, e-mail addresses duren@vi.nl, knipping@vi.nl Two
subsequent articles have been published in VI by the same authors April 6, 2011, nr. 14, pp.
116–119, and April 20, 2011, nr. 16, pp. 118–121.
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R 2010–2011 Score2009–2010Score 2008–2009 Score

1 Ajax 73 FC Twente 86 AZ’67 80

2 FC Twente 71 Ajax 85 FC Twente 69

3 PSV 69 PSV 78 Ajax 68

4 AZ’67 59 Feyenoord 63 PSV 65

5 FC Groningen 57 AZ’67 62 SC Heerenveen 60

The annual CPM is a marketing instrument that measures the marketing

value (through a professional jury of marketing specialists) as well as the imago

of every professional soccer team (through the randomly selected soccer fans),

which, in turn, is determined on the basis of six parts. Finally, the marketing

value, the imago, and the annual sport result are put into some calculation

model yielding the annual CPM scores.

The top five of the best marketing in 2011 is as follows: (1) PSV; (2) SC

Heerenveen; (3) FC Twente; (4) Ajax; (5) Feyenoord. Like the fourth edition,

the team with the best imago is FC Twente due to its unique national cham-

pionship, its successful participation in the international Champions League

as well as the European League (till the quarter finales), and its new stadium

called Grolsch Veste. FC Twente’s imago is the best in the subfields attraction

(charm), fascination, economical success, and the second best in the subfields

emotional involvement and identification. The top six of the best imago is as

follows: (1) FC Twente 699; (2) Ajax 641; (3) PSV 624; (4) SC Heerenveen

558; (5) FC Groningen 539; (6) Feyenoord 476.

In summary, the CPM score of FC Twente increased drastic, Feyenoord’s

score decreased drastic, so that the third ranking in the CPM 2011 scores is

occupied by FC Twente. Ajax and PSV remain first and second due to the

CPM results of the previous years. The top seven of the last three final CPM

rankings is as follows (R = ranking):



Interaction between Dutch soccer teams and Fans 92

R CPM 2011 Score CPM 2010 Score CPM 2009 Score

1 Ajax 2.928 Ajax 2.888 Ajax 2.791

2 PSV 2.649 PSV 2.568 PSV 2.656

3 FC Twente 2.269 Feyenoord 2.237 Feyenoord 2.255

4 Feyenoord 2.199 AZ’67 2.106 AZ’67 2.165

5 AZ’67 2.086 FC Twente 2.059 SC Heerenveen 2.104

6 SC Heerenveen 2.071 SC Heerenveen 1.943 FC Groningen 1.804

7 FC Groningen 1.780 FC Groningen 1.552 FC Twente 1.661

Concerning the fan status, the CPM 2011 top five is as follows: (1) Ajax;

(2) Feyenoord; (3) PSV; (4) FC Twente; (5) AZ’67. During the first CPM

research October 2006, FC Twente started with a fanstatus of 250.000 fans,

nowadays its fan status has been increased up to about 1.6 million, being the

double of its previous edition.

8.2 The fan database model

Given the current fan status as the model of the interaction between the pro-

fessional Dutch soccer teams and their potential fans, our main goal is to apply

the solution part of the mathematical field called “Cooperative game theory”.

The so-called “players” are the soccer teams, each of which is endowed with

a set of potential fans, each of which is supposed to validate its fan regis-

tration in a central database through an annual voluntary sponsorship to be

cashed to the national soccer association. This annual sponsorship is said to

be voluntary since it varies from fan to fan, each fan decides by him/herself

about the contribution to be small or large. No registration if the potential

fan is not willing to fulfil this sponsorship. In fact, any commitment to this

sponsorship guarantees certain priorities to the fan, such as priority rights to

purchase tickets for additional (inter)national soccer matches with or without
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discount, program booklets free of charge, and so on. Notice that any fan is

allowed to be registrated (in a central database run by the national soccer

association) for a number of distinct soccer teams (not necessarily one team),

while contributing the annual voluntary sponsorship once (at the beginning of

the soccer season). The next table surveys the essential notions.

Symbol Interpretation Symbol Interpretation

N set of soccer teams i ∈ N i is called player

Di set of fans of soccer team i j ∈ Di fan j of soccer team i

D = ∪i∈NDi set of all fans j ∈ D fan j

Symbol Interpretation

S, S ⊆ N subset of soccer teams

i ∈ S soccer team i of coalition S

DS = ∪i∈SDi subset of fans of at least one soccer team of S

Nj = {i ∈ N | j ∈ Di}
set of soccer teams of which j is a fan

equivalence: i ∈ Nj iff j ∈ Di

sj > 0
annual voluntary sponsorship of fan j

in order to validate the fan registration∑
j∈D

sj total sponsorship of all fans

∑
j∈DS

sj
coalitional sponsorship a of fans of

at least one soccer team of S
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Symbol Interpretation

∑
j∈D

sj −
∑

j∈DS

sj
coalitional loss (shortage) of sponsorship

of soccer teams of coalition S

c(S) =
∑
j∈D

sj −
∑

j∈DS

sj coalitional cost equals the loss of

coalitional sponsorship versus total sponsorship

c(N) = 0
motivation for cooperation to form N

due to minimization of shortages of sponsorship

In summary, the fan database of professional Dutch soccer teams may

be modeled as the triple (N, (Di)i∈N , (sj)j∈D) such that the player set N

consists of the soccer teams, the set Di consists of fans of soccer team i,

and sj > 0 represents the annual voluntary sponsorship of fan j. In fact,

these sponsorships are combined to construct the following cost allocation

y⃗ = (yi)i∈N ∈ RN .

Consider the budget B as the sum of sponsorships of fans with a unique

(unspecified) favourite soccer team (that is, j ∈ D with |Nj | = 1). Factorize

this budget in accordance with the appearance of the unique soccer team

involved, that is B =
∑

i∈N bi, with the understanding that bi = 0 if there are

no fans j ∈ D with unique favourite soccer team i. Finally, with reference to

these factorizations, determine the deviations with respect to their average. In

summary, charge to soccer team i the cost allocation amounting yi =
B
|N | − bi

for all i ∈ N . In words, reward to soccer team i the negative amount −bi,

and charge the budget B equally among all the soccer teams. In particular,

a soccer team i receives a reward (instead of a cost charge) if and only if the

total sponsorship bi exceeds the average B
|N | of the budget. The larger bi, the

larger the reward to soccer team i. That is, soccer teams benefit from fans

who are willing to contribute a large sponsorship. The second table surveys

the essential notions in the setting of cost allocations. Let |X| denote the

cardinality of any finite set X.
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Formula Interpretation

B =
∑
j∈D,

|Nj |=1

sj the total sponsorship of fans with a unique

unspecified favourite soccer team

bi =
∑
j∈D,

Nj={i}

sj the total sponsorship of fans with the unique

specified favourite soccer team i

yi =
B
|N | − bi cost allocation charged to soccer team i

8.3 The game theoretic model and the Nucleolus

Our main goal is to support the cost allocation (yi)i∈N from the viewpoint of

Cooperative game theory as the so-called Nucleolus [53] of the suitably chosen

fan data cost game ⟨N, c⟩ defined by c(∅) = 0 and

c(S) =
∑
j∈D

sj −
∑
j∈DS

sj =
∑

j∈D\DS

sj for all S ⊆ N , S ̸= ∅ (8.3.1)

For instance, for any i ∈ N , the fan data cost

c(N\{i}) =
∑

j∈D\DN\{i}

sj =
∑
j∈D,

Nj={i}

sj = bi (8.3.2)

Here the second equality is due to the following equivalences (for fixed i ∈ N):

Nj = {i}
⇔ i ∈ Nj and k ̸∈ Nj for all k ̸= i

⇔ j ∈ Di and j ̸∈ Dk for all k ̸= i

⇔ j ∈ Di and j ̸∈ DN\{i}

⇔ j ∈ D\DN\{i}

Note that the soccer teams are willing to cooperate (to share the fan data

information of the central database) in order to solve the minimization problem
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of shortages of sponsorships in that c(N) = 0 reflecting the formation of the

grand coalition.

Our proof technique involves the notion of excess e(T, x⃗) = c(T ) −
∑

i∈T xi,

where T ⊆ N , T ̸= N , T ̸= ∅, and x⃗ = (xi)i∈N ∈ RN . It turns out that the

level of the smallest excesses with respect to our cost allocation y⃗ = (yi)i∈N
is composed of all the (|N | − 1)-person coalitions N\{i}, i ∈ N , due to the

following fundamental property of the fan data cost game ⟨N, c⟩ respectively
the sponsorships sj , j ∈ D, of fans: for all T ⊆ N , T ̸= N , T ̸= ∅,

c(T ) ≥
∑

i∈N\T

bi or equivalently, by (8.3.1), (8.3.3)

∑
j∈D\DT

sj ≥
∑

i∈N\T

∑
j∈D,

Nj={i}

sj (8.3.4)

The validity of (8.3.4) follows immediately from the inclusion {j ∈ D |
Nj = {i}, i ∈ N\T} ⊆ D\DT . Consequently, by (8.3.3), the excess e(T, y⃗)

with respect to our cost allocation y⃗ satisfies

e(T, y⃗) = c(T )−
∑
i∈T

yi = c(T ) +
∑
i∈T

bi −
B

|N |
· |T |

≥
∑
i∈N

bi −
B

|N |
· |T | = B − B

|N |
· |T | ≥ B

|N |

whereas, for all i ∈ N ,

e(N\{i}, y⃗) = c(N\{i})−
∑
k∈N

yk + yi = c(N\{i})− 0 +
B

|N |
− bi =

B

|N |

where the latter equality is due to (8.3.2).

Hence, all (|N | − 1)-person coalitions have the smallest excess among

non-trivial coalitions with respect to our cost allocation y⃗ and according to

Kohlberg’s criterion [34] , this suffices to conclude that our cost allocation y⃗

agrees with the Nucleolus of the fan data cost game ⟨N, c⟩ of the form (8.3.1).
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8.4 The empty Core of the sponsorship game

In the setting of the division problem of the total budget B among the soccer

teams, it is natural to study the sponsorship game ⟨N, v⟩ defined by

v(S) =
∑
j∈DS

sj for all S ⊆ N , S ̸= ∅ (8.4.1)

Clearly, straight from its definition, v(N) ≥ B. Unfortunately, this spon-

sorship game has the drawback that its so-called “Core” is empty. For that

purpose, consider the set of “reasonable” payoff vectors of the game consisting

of efficient payoff vectors x⃗ = (xi)i∈N ∈ RN satisfying
∑

i∈N xi = v(N) as well

as lower and upper bounds for the individual payoffs such that v({i}) ≤ xi ≤
v(N)− v(N\{i}) for all i ∈ N . In the context of the sponsorship game ⟨N, v⟩
of the form (8.4.1), it holds for all i ∈ N

v(N)− v(N\{i}) =
∑
j∈D

sj −
∑

j∈DN\{i}

sj =
∑

j∈D\DN\{i}

sj = c(N\{i}) = bi

where the last equation is due to 8.3.2. Thus any reasonable payoff vector x⃗

satisfies xi ≤ bi for all i ∈ N and consequently, by summing up, v(N) ≤ B.

This contradicts the earlier observation v(N) ≥ B. So, reasonable payoff

vectors do not exist, and hence, the Core of the sponsorship game is empty

too (as a subset).

8.5 Concluding Remarks

Inspired by the first lustrum of the Club Positioning Matrix (CPM) for pro-

fessional Dutch soccer teams, we model the interaction between soccer teams

and their potential fans as a cooperative cost game based on the annual volun-

tary sponsorships of fans in order to validate their fan registration in a central

database. We introduce a natural cost allocation to the soccer teams, based in

a natural manner on the sponsorships of fans. The game theoretic approach

is twofold. On the one hand, an appropriate cost game called “fan data cost

game” is developed and on the other, it is shown that the former natural cost

allocation agrees with the solution concept called “Nucleolus” of the fan data

cost game.
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Chapter 9

Data Cost Games as an
Application of 1-Concavity in
Cooperative game theory

ABSTRACT - In this chapter, The main goal is to reveal the 1-

concavity property for a subclass of cost games called Data Cost Games.

Two significantly different proofs are treated. The motivation for the

study of the 1-concavity property are the appealing theoretical results for

both the Core and the nucleolus, in particular their geometrical charac-

terization as well as their additivity property. The characteristic cost

function of the original Data Cost Game assigns to every coalition the

additive cost of reproducing the data the coalition does not own. The

underlying data and cost sharing situation is composed of three compo-

nents, namely the player set, the collection of data sets for individuals,

and the additive cost function on the whole data set. The first proof

of 1-concavity is direct, but robust to a suitable generalization of the

characteristic cost function. The second proof of 1-concavity is based

on a suitably chosen decomposition of the data cost game which in-

vites to a close comparison between the nucleolus and the Shapley cost

allocations.
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9.1 The Data Sharing Situation and the Data Cost
Game

This chapter broadens the game theoretic approach to the data sharing situ-

ation initiated by Pierre Dehez and Daniela Tellone [7]. The origin of their

mathematical study is the data and cost sharing problem faced by the Euro-

pean chemical industry. Following the regulation imposed by the European

Commission under the acronym “REACH” (Registration, Evaluation, Autho-

rization and restriction of CHemical substances), manufacturers and importers

are required to collect safety information on the properties of their chemical

substances. There are about 30,000 substances and an average of 100 param-

eters for each substance. Chemical firms are required to register the informa-

tion in a central database run by the European Chemicals Agency (ECHA).

By 2018, this regulation program REACH requires submission of a detailed

analysis of the chemical substances produced or imported. Chemical firms

are encouraged to cooperate by sharing the data they have collected over the

past. To implement this data sharing problem, a compensation mechanism is

needed.

This data sharing problem can be specified as follows. A finite group of firms

agrees to undertake a joint venture that requires the combination of various

complementary inputs held by some of them. These inputs are non-rival but

excludable goods, i.e., public goods with exclusion such as knowledge, data or

information, patents or copyrights (the consumption of which by individuals

can be controlled, measured, and subjected to payment or other contractual

limitations). In what follows we use the common term data to cover generi-

cally these goods. Each firm owns a subset of data. No a priori restrictions

are imposed on the individual data sets. In addition, with each type of data

there is associated its replacement cost, e.g., the present cost of duplicating

the data (or the cost of developing alternative technologies). Because these

public goods are already available, their costs are sunk. In summary, the data

sharing situation involves a finite group of agents, data sets owned by individ-

ual agents, as well as a discrete list of costs of data.

In the setting of cooperative attitudes by chemical firms, the main question

arises how to compensate the firms for the data they contribute to share.

The design of a compensation mechanism, however, is fully equivalent to the
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selection among existing solution concepts in the mathematical field called Co-

operative game theory. In fact, the solution part of Cooperative game theory

aims at solving any allocation problem by proposing rules based on certain

fairness properties. For that purpose, the data and cost sharing situation

needs to be interpreted as a mathematical model called a cooperative game by

specifying its fundamental characteristic cost function. We adopt Dehez and

Tellone’s game theoretic model in which the cost associated to any non-empty

group of agents is simply the sum of costs of the missing data, i.e., the total

cost of data the group does not own. In this framework, no cost are charged

to the whole group of agents. The so-called data cost games are therefore

compensation games to which standard cost allocation rules can be applied,

such as the Shapley value [52], [56], the nucleolus [53], the Core and so on.

The determination of these game theoretic solution concepts may be strongly

simplified whenever the underlying characteristic cost function satisfies, by

chance, one or another appealing property. The main purpose of this chap-

ter is to establish the so-called 1-concavity property for the class of data cost

games, which property has not yet been revealed. Two significantly different

proofs are treated, each of which exploited in its own interest. The impact

of the 1-concavity property is fundamental for the uniform determination of

both solution concepts the Core and the nucleolus [21].

Definition 9.1. [7]

(i) A data and cost sharing situation is given by the 3-tuple DC = (N,D, C)
where N is the finite set of agents, D = (Di)i∈N a collection of sets
Di ⊆ D, i ∈ N , of data, and C = (cj)j∈D a collection of costs of data.
So, D = ∪i∈NDi denotes the whole data set.

(ii) Given the set N of agents, let P(N) = {S | S ⊆ N} denote the power-
set of N . For every coalition S ⊆ N , S ̸= ∅, let DS = ∪i∈SDi denote
the data set of S. For every subset A ⊆ D of data, let c(A) =

∑
j∈A cj

denote its additive cost, whereas c(∅) = 0.

(iii) With every data and cost sharing situation DC = (N,D, C), there is
associated the Data Cost Game ⟨N,CDC⟩, of which the characteristic
cost function CDC : P(N) → R is given by CDC(∅) = 0 and for all
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S ⊆ N , S ̸= ∅,

CDC(S) =
∑

j∈D\DS

cj Shortly, CDC(S) = c(D\DS) = c(D)−c(DS)

(9.1.1)

By (9.1.1), the so-called data cost CDC(S) of coalition S equals the additive

cost of duplicating the missing data, i.e., costs of data the coalition does not

own. Without loss of generality, it is tacitly supposed that there exist no

overall missing data, that is D = DN ; otherwise the data cost of every non-

empty coalition S would increase with the same cost amounting c(D\DN ) =

c(D) − c(DN ). In our framework, no data cost are charged to the whole

set of agents, i.e., CDC(N) = 0. Obviously, every data cost game ⟨N,CDC⟩
satisfies both the (decreasing) monotonicity (i.e., CDC(S) ≥ CDC(T ) for all

S ⊆ T ⊆ N , S ̸= ∅, due to DS ⊆ DT ) and subadditivity as well (i.e., CDC(S ∪
T ) ≤ CDC(S) + CDC(T ) for all S, T ⊆ N with S ∩ T = ∅).

Definition 9.2. [22], [21], [23] A cooperative cost game ⟨N,C⟩ with player set
N is said to satisfy the 1-concavity property if its characteristic cost function
C : P(N) → R satisfies

C(N) ≤ C(S)+
∑

i∈N\S

∆i(N,C) for all S ⊆ N , S ̸= N , S ̸= ∅, and (9.1.2)

C(N) ≥
∑
i∈N

∆i(N,C) where ∆i(N,C) = C(N)− C(N\{i}) for all i ∈ N .

(9.1.3)

Condition (9.1.2) requires that the cost C(N) of the formation of the grand

coalition N can be covered by any coalitional cost C(S) together with the

marginal costs ∆i(N,C), i ∈ N\S, of all the complementary players. Accord-

ing to condition (9.1.3), all these marginal costs are weakly insufficient to cover

the overall cost C(N). In the framework of data cost games, the latter condi-

tion (9.1.3) holds trivially due to the compensation assumption CDC(N) = 0.

The next two sections are devoted to two significantly different proofs of the

1-concavity property for data cost games. Each of the two proofs has its own

peculiarities and generalizations.
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9.2 1-Concavity of the Data Cost Game: 1st proof

Theorem 9.1. Every data cost game ⟨N,CDC⟩ of the form (9.1.1) satisfies
1-concavity.

Proof. Let ⟨N,CDC⟩ be a data cost game. Fix coalition S ⊆ N , S ̸= N ,

S ̸= ∅. We establish the 1-concavity inequality (9.1.2) applied to ⟨N,CDC⟩.
Because of the compensation assumption CDC(N) = 0, the condition (9.1.2)

reduces to

CDC(S) ≥
∑

i∈N\S

CDC(N\{i}) or equivalently, by (9.1.1),

c(D)− c(DS) ≥
∑

i∈N\S

[
c(D)− c(DN\{i})

]
(9.2.1)

Write N\S = {i1, i2, . . . , in−s} where n − s denotes the cardinality of N\S.
Define, for every 0 ≤ k ≤ n − s, the data set Aik = DS ∪k

ℓ=1 Diℓ where

Ai0 = DS , Ain−s = DN = D. In this setting, using a telescoping sum, (9.2.1)

is equivalent to

n−s∑
k=1

[
c(Aik)− c(Aik−1

)

]
≥

n−s∑
k=1

[
c(D)− c(DN\{ik})

]
(9.2.2)

In view of (9.2.2), it suffices to show the following: for all 1 ≤ k ≤ n− s

c(Aik)− c(Aik−1
) ≥ c(D)− c(DN\{ik}) or equivalently, (9.2.3)∑

j∈Aik
\Aik−1

cj ≥
∑

j∈D\DN\{ik}

cj (9.2.4)

In view of (9.2.4), in turn, it suffices to show the inclusion D\DN\{ik} ⊆
Aik\Aik−1

for all 1 ≤ k ≤ n − s. Finally, note that j ∈ D\DN\{ik} means

j ∈ Dik , but j ̸∈ Diℓ for all ℓ ̸= k. 2

Notice that the equivalence of (9.2.3) and (9.2.4) in the proof of Theorem

9.1 is due to the additive cost assumption in that c(A) =
∑

j∈A cj for any data

subset A ⊆ D. We claim that the 1-concavity property is still valid when the
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characteristic cost function CDC : P(N) → R is of the following generalized

form: there exists a real number β ∈ {1, 12 ,
1
3 , . . .} such that

CDC(S) =

[∑
j∈D

cj

]β
−

[ ∑
j∈DS

cj

]β
for all S ⊆ N , S ̸= ∅. (9.2.5)

By (9.2.5), the data cost of coalition S equals the surplus of costs of data

that the coalition does not own, where the surplus is measured by some concave

utility function u(x) of the form x
1
α such that α is any natural number (the

case α = 1 agrees with the additive cost setting).

Theorem 9.2. Every generalized data cost game ⟨N,CDC⟩ of the form (9.2.5)
satisfies the 1-concavity property.

Proof. It suffices to prove the equivalent version of (9.2.3) as follows: for

all 1 ≤ k ≤ n− s[ ∑
j∈Aik

cj

]β
−

[ ∑
j∈Aik−1

cj

]β
≥

[∑
j∈D

cj

]β
−

[ ∑
j∈DN\{ik}

cj

]β
(9.2.6)

Write α = 1
β . We make use of the fundamental calculus relationship:

x− y =

[
xβ − yβ

]
·
[α−1∑
p=0

(xβ)α−1−p · (yβ)p
]

for all x, y ∈ R.

Fix 1 ≤ k ≤ n − s. This fundamental calculus relationship applied to the

validity of (9.2.3) yields[[ ∑
j∈Aik

cj

]β
−
[ ∑
j∈Aik−1

cj

]β]
·A ≥

[[∑
j∈D

cj

]β
−
[ ∑
j∈DN\{ik}

cj

]β]
·B (9.2.7)

where the two real numbers A,B are given by

A =

α−1∑
p=0

[ ∑
j∈Aik

cj

]α−1−p
α

·
[ ∑
j∈Aik−1

cj

] p
α

and

B =

α−1∑
p=0

[∑
j∈D

cj

]α−1−p
α

·
[ ∑
j∈DN\{ik}

cj

] p
α



Data Cost Games as an Application of 1-Concavity 105

Note that A ≤ B due to the sum of increasing functions xq, where q > 0.

From (9.2.7), together with A ≤ B, we conclude that (9.2.6) holds. 2

Corollary 9.1. According to the theory developed for n-person 1-concave cost
games ⟨N,C⟩ [21], the so-called nucleolus cost allocation y⃗ = (yi)i∈N ∈ RN

for any data cost game ⟨N,CDC⟩ is given by

yi = ∆i(N,CDC)− 1
n ·

[ ∑
j∈N

∆j(N,CDC)− CDC(N)

]
(9.2.8)

Because CDC(N) = 0, it holds ∆i(N,CDC) = −CDC(N\{i}) for all i ∈ N and
so, (9.2.8) simplifies as follows: for all i ∈ N ,

yi = −CDC(N\{i})+∆(N,CDC)

n
where ∆(N,CDC) =

∑
j∈N

CDC(N\{j})

(9.2.9)

In particular, yi < 0 iff CDC(N\{i}) > ∆(N,CDC)
n . In words, according to

the nucleolus, a player i receives a compensation if and only if the coalitional
cost CDC(N\{i}) strictly majorizes the average of such expressions, that is the
(n− 1)-person coalition not containing player i owns sufficiently few data.

9.3 1-Concavity of the Data Cost Game: 2nd proof

An alternative, but not less attractive proof of the main Theorem 9.1 is based

on the algebraic representation of any data cost game with respect to a suitably

chosen basis of the whole game space with fixed player set N . The proposed

new basis has been introduced and developed in [10] as a subclass of 1-concave

n-person games. In turn, we establish that every data cost game can be

decomposed as a linear combination, with nonnegative coefficients, of these

so-called complementary unanimity cost games.

Definition 9.3. [10] (with adapted notation). With every coalition T ⊆ N ,
T ̸= N , T ̸= ∅, there is associated the complementary unanimity cost game
⟨N,CT ⟩ given by

CT (S) =

{
1, if S ̸= ∅ and S ∩ T = ∅;
0, if S = ∅ or S ∩ T ̸= ∅. (9.3.1)
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In addition, the complimentary unanimity cost game ⟨N,C∅⟩ is given by
C∅(∅) = 0 and C∅(S) = 1 otherwise. Note that CT (N) = 0 for all T $ N ,
except T = ∅.

Remark 9.1. It is left for the reader to check that every complementary
unanimity cost game ⟨N,CT ⟩ of the form (9.3.1), provided T ̸= ∅, may be
interpreted as the data cost game associated with any data sharing situation
in which complementary agents own no data (i.e., Di = ∅ for all i ∈ N\T ),
whereas agents of T own the same data set (i.e., Di = D for all i ∈ T ) with the
total data cost to be normalized in that

∑
j∈D cj = 1. As shown in [10], every

complementary unanimity cost game possesses the 1-concavity property.

Theorem 9.3. Let DC = (N,D, C) be a data and cost sharing situation. For
every data j ∈ D, let Nj = {i ∈ N | j ∈ Di} be the set of agents who own
data j. Every data cost game ⟨N,CDC⟩ can be decomposed as the following
linear combination of a number of complementary unanimity cost games with
nonnegative coefficients:

CDC =
∑
j∈D

cj · CNj where Nj ̸= ∅ for all j ∈ D. (9.3.2)

Proof. Fix coalition S ⊆ N , S ̸= ∅. We prove the equality
∑
j∈D

cj ·

CNj (S) = CDC(S). For that purpose, note the following equivalences, given

any data j ∈ D: (i)CNj (S) = 1

(ii)S ∩Nj = ∅
(iii)i ̸∈ Nj , for all i ∈ S

(iv)j ̸∈ Di, for all i ∈ S

(v)j ̸∈ DS

Hence, CNj (S) = 1 if and only if j ̸∈ DS . Thus,
∑
j∈D

cj ·CNj (S) =
∑

j∈D\DS

cj =

CDC(S). 2

Theorem 9.1 is a corollary of Theorem 9.3. In case there would exist

overall missing data (that is, D ̸= DN ), then the linear combination of the

form (9.3.2) has to be extended with the additional term c(D\DN ) · C∅. The

decomposition result (9.3.2) for data cost games is an extremely helpful tool

to determine its Shapley cost allocation as well as its nucleolus cost allocation

by exploiting the additivity property for the nucleolus on the subclass of data

cost games. The cardinality of any finite set X is denoted by |X|.
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Corollary 9.2. As shown in [10], the well-known Shapley cost allocation
charged to the agents of any n-person complementary unanimity cost game
⟨N,CT ⟩ amounts

Shi(N,CT ) =

{ 1
n , for all i ∈ N\T ;
1
n − 1

|T | , for all i ∈ T .

By applying the additivity property of the Shapley cost allocation to the
decomposition result (9.3.2), it follows that the Shapley cost allocation charged

to any agent i in any data cost game ⟨N,CDC⟩ amounts Shi(N,CDC) =
c(D)
n −∑

j∈Di

cj
|Nj | . In words, the cost c(D) of the whole data set is charged equally

among the agents, whereas each agent receives the individual compensation
amounting the total cost of data (not necessarily uniquely) owned by the agent,
in proportion with the number |Nj | of owners of any data j, j ∈ D.

Corollary 9.3. In view of (9.2.8), the nucleolus cost allocation charged to the
agents of any n-person complementary unanimity cost game ⟨N,CT ⟩ amounts
zero whenever coalition T contains at least two players (in fact, its Core degen-
erates into a singleton composed of the zero vector). In case T is an one-person
coalition, say T = {i}, then its nucleolus cost allocation µ(N,C{i}) coincides

with its Shapley cost allocation, that is µj(N,C{i}) = 1
n for all j ∈ N\{i},

whereas µi(N,C{i}) =
1
n − 1. By applying the appealing additivity property of

the nucleolus cost allocation on the class of 1-concave cost games with fixed
player set N , it follows from the decomposition result (9.3.2) that the nucle-
olus cost allocation charged to any agent i in any data cost game ⟨N,CDC⟩
amounts

µi(N,CDC) =
1

n
·
∑
j∈D,

|Nj |=1

cj −
∑
j∈D,

Nj={i}

cj for all i ∈ N , that is

µi(N,CDC) = −αi +
α

n
where αi =

∑
j∈D,

Nj={i}

cj and α =
∑
i∈N

αi =
∑
j∈D,

|Nj |=1

cj

Notice that the latter nucleolus cost allocation is fully determined by the costs
of data of unique owners. In fact, the total cost of data uniquely owned is
charged equally among the agents, whereas each agent receives the individual
compensation amounting the total cost of data uniquely owned by the agent.
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Observe the equivalence Nj = {i} iff j ∈ D\DN\{i} and hence,

αi =
∑
j∈D,

Nj={i}

cj =
∑

j∈D\DN\{i}

cj = CDC(N\{i}) in accordance with (9.2.9).

Moreover, the 1-concavity condition (9.1.2) for the data cost game ⟨N,C⟩ of
the form (9.1.1) may be reformulated as

CDC(S) ≥
∑

i∈N\S

αi or equivalently,
∑

j∈D\DS

cj ≥
∑

i∈N\S

∑
j∈D,

Nj={i}

cj

(9.3.3)

9.4 Concluding Remarks

Two significantly different proofs of the 1-concavity property for data cost

games are treated in Sections 9.2 and 9.3. The second proof technique is

based on an algebraic decomposition method which is an extremely helpful

tool for the determination of the Shapley and nucleolus cost allocation. Due

to 1-concavity, the formula (9.2.8) for the nucleolus cost allocation is fully

determined in terms of the marginal costs ∆i(N,C) = C(N) − C(N\{i}),
i ∈ N , together with C(N) = 0. Result about the Core for data cost games

is beyond the scope of this chapter and can be found in [7], [8], [11]. A third

and fourth proof of the main Theorem 9.1 is given in [11]. One of these

proofs deals with individual data sets that form a partition of the whole data

set. Three other applications of one-concavity or one-convexity, called library

game, co-insurance game, and the dual game of the Stackelberg oligopoly game

respectively, can be found in [10], [13] and [12]. The nucleolus for 2-convex

games is treated in [15]. The search for other appealing classes of cost games

satisfying the 1-concavity property is still going on.



Chapter 10

Convexity of the “Airport
Profit Game” and
k-Convexity of the
“Bankruptcy Game”

ABSTRACT - In this chapter, the topic is two-fold. Firstly, we prove

the convexity of Owen’s Airport Profit Game (inclusive of revenues and

costs). As an adjunct, we characterize the class of 1-convex Airport

Profit Games by equivalent properties of the corresponding cost func-

tion. Secondly, we classify the class of 1-convex Bankruptcy Games by

solving a minimization problem of its corresponding gap function.

10.1 The Airport Profit Game: the model and its
properties

In the period of Schmeidler’s pioneering research on the Nucleolus [53], two

previous papers [39], [38] dealt with the study of the Nucleolus for the so-called

“Airport Cost Game” and “Airport Profit Game” respectively. The charac-

teristic function of the former game was given by the negative of the airport

109
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runway construction cost function such that the capital cost of a runway de-

pends upon the largest aircraft type for which the runway is designed. The

characteristic function of the latter game takes account of optional revenues

generated by the aircraft movements such that the worth of any coalition of

aircraft movements was defined as the maximum revenue less construction cost

attainable by that coalition. This would allow any coalition to build a runway

accommodating only a subset of its members, if that were more profitable.

In this airport runway setting, the finite set N = {1, 2, . . . , n} of players com-

prised movements (take-offs and landings) by different types of aircrafts. De-

fine two vectors (ri)i∈N and (ci)i∈N where ri > 0 is the revenue and ci > 0 the

cost associated with player i, i ∈ N . Without loss of generality, let the players

be indexed in strictly increasing order such that 0 := c0 < c1 < c2 < . . . . . . <

cn−1 < cn. Define the characteristic function v : P(N) → R of the Airport

Profit Game ⟨N, v⟩ by v(∅) = 0 and for all non-empty coalitions S ⊆ N ,

S ̸= ∅,

v(S) = max
k∈{1,2,...,n}

[ ∑
j∈S,

1≤j≤k

rj − ck

]
or equivalently, (10.1.1)

v(S) = max
k∈{1,2,...,s}

[ k∑
j=1

rij − cik

]
(10.1.2)

Throughout the remainder of this chapter, re-number the members of any

non-empty coalition S according to the order of players such that

S = {i1, i2, . . . , is−1, is}, where s = |S| denotes the cardinality of the finite

set S. Here player i1 is the smallest player in S, i2 is the smallest but one,

and is is the largest player in S, also denoted by iS . In case 1 ̸∈ S, then the

maximization problem (10.1.2) is meant to start with −c1 and otherwise, to

start with r1− c1. Generally speaking, the worths of one-person coalitions are

of two types, namely v({1}) = r1 − c1 as well as v({i}) = max

[
−c1, ri − ci

]
for all i ∈ N\{1}. It is left to the reader to check the validity of the super-

additivity property in that v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ⊆ N with

S ∩ T = ∅. By (10.1.3), the individual benefit of any player is bounded above

by the player’s revenue and bounded below by zero.
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Proposition 1. The Airport Profit Game ⟨N, v⟩ satisfies the following prop-
erties.

(i) 0 ≤ v(S ∪ {i})− v(S) ≤ ri for all S ⊆ N , all i ∈ N\S. (10.1.3)

(ii) v(S) = max

[
v(S\{iS}),

∑
j∈S

rj − ciS

]
if s ≥ 2 (10.1.4)

(iii) v(T ) = v(T\{1}) + r1 for all T ⊆ N , 1 ∈ T , T ̸= {1} (10.1.5)

(iv) ri ≥ v({i}) + c1 for all i ∈ N , i ̸= 1 (10.1.6)

(v) v({i, j}) ≥ v({i}) + v({j}) + c1 for all i, j ∈ N , i ̸= j (10.1.7)

Proof. (i) Let S ⊆ N\{1}, and i ∈ N\S. Then the boundedness of

the player’s individual benefit v(S ∪ {i}) − v(S) from below by zero and

from above by ri respectively, is a direct consequence of, on the one hand,

the maximization problem to attain v(S) as the maximum term in some se-

quence αk, k ∈ S, and, on the other hand, the maximization problem to

attain v(S ∪ {i}) as the maximum term in the corresponding extended se-

quence α1, α2, . . . , αp, β, αp+1+ri, αp+2+ri, . . . , αs+ri. Here the intermediate

term β amounts αp + cp + ri − ci. Independently of β, the lower inequality

v(S ∪ {i}) ≥ v(S) holds, while the upper inequality v(S ∪ {i}) − v(S) ≤ ri
holds because the corresponding entries in both sequences do differ at most

the amount ri, in particular the entry β in the second sequence differs from

the entry αp in the first sequence in that the amount β−αp = cp− ci+ ri < ri
since ci > cp by choosing p as the direct predecessor of i in S.

In case player i is the largest player of the coalition S ∪ {i}, then the tail

of both sequences with corresponding differences amounting ri vanish and

the identical heading of both sequences yields the significant relationship

v(S ∪ {i}) = max

[
v(S),

∑
j∈S∪{i}

rj − ci

]
, provided i = iS∪{i}. The study

of the remaining case in which i < k for all k ∈ S is left to the reader. This

proves (10.1.3) as well as (10.1.4). Further, (10.1.5) is a direct consequence

of (10.1.2). Moreover, we prove (10.1.6) in case i ̸= 1 through the following
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chain of equivalences.

ri ≥ v({i}) + c1 ⇐⇒ ri ≥ c1 +max

[
−c1, ri − ci

]

⇐⇒ ri ≥ max

[
0, ri − ci + c1

]
⇐⇒ ri ≥ ri − ci + c1 ⇐⇒ ci ≥ c1

The latter inequality ci ≥ c1 holds by ordering the costs. So, (10.1.6) holds.

Finally, we prove (10.1.7) in case i < j through the following chain of equiva-

lences.

v({i, j}) ≥ v({i}) + v({j}) + c1

⇐⇒ v({i, j})− v({i}) ≥ v({j}) + c1 assuming i < j

⇐⇒ max

[
0, ri + rj − cj − v({i})

]
≥ max

[
0, rj − cj + c1

]
⇐= ri + rj − cj − v({i}) ≥ rj − cj + c1

⇐⇒ ri ≥ v({i}) + c1

So, (10.1.7) holds, provided (10.1.6) holds. 2

For instance, the worths of multi-person coalitions in any three-person

Airport Profit Game ⟨N, v⟩ are given by

v({1, 2}) = max

[
r1 − c1, r1 + r2 − c2

]

v({1, 3}) = max

[
r1 − c1, r1 + r3 − c3

]

v({2, 3}) = max

[
−c1, r2 − c2, r2 + r3 − c3

]
as well as

v({1, 2, 3}) = max

[
r1 − c1, r1 + r2 − c2, r1 + r2 + r3 − c3

]
Observe that player 1 acts as a quasi-dummy player in that each individual

benefit v(T ) − v(T\{1}) = r1 for all coalitions T containing player 1, except
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for the singleton T = {1}. In fact, this significant relationship (10.1.5) yields

in a straightforward manner the quasi-dummy player property for player 1 in

any n-person Airport Profit Game and consequently, the payoff according to

the Shapley value of player 1 equals r1 − c1
n . An alternative proof of (10.1.5)

proceeds by induction on the coalition size and is omitted.

10.2 The convexity of the Airport Profit Game

The most significant property of the Airport Profit Game is its convexity. In

this section, we will study the convexity property of the airport profit game.

Before that we recall the definitions of convex game.

Generally speaking, a cooperative game ⟨N, v⟩ with arbitrary characteristic

function v : P(N) → R is said to be convex if it holds [54]

(i) v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N

(ii) v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T )

for all S, T ⊆ N , S ⊆ T , i ∈ N\T , or
(iii) v(S ∪ {i})− v(S) ≤ v(S ∪ {i, j})− v(S ∪ {j})

for all S ⊆ N , i, j ∈ N\S, or
(iv) ∆v

i (S) ≤ ∆v
i (S ∪ {j}) for all S ⊆ N , i, j ∈ N\S, i ̸= j, (10.2.1)

where∆v
k(T ) = v(T ∪ {k})− v(T ) for all T ⊆ N , and all k ∈ N\T .

Theorem 10.1. (i) If 1 < i < j ≤ n and ∆v
i (T ∪ {j}) ̸= ri, then ∆v

j (T ) = 0
(ii) The Airport Profit Game ⟨N, v⟩ satisfies the convexity property (10.2.1)

Proof. (i) Let 1 < i < j ≤ n and T ⊆ N such that ∆v
i (T ∪ {j}) ̸= ri. In

words, this means that there is no maximizer to attain the worth v(T ∪ {j})
in the tail of the corresponding maximization problem and what is left, its

simultaneous maximizer is attained in the heading of the two maximization

problems for T ∪ {j} and T respectively, stated as ∆v
j (T ) = 0.

Formally, we distinguish two cases. If i1 < i, then there exists 1 ≤ k ≤ p such

that v(T ∪ {j}) = αk. By feasibility, αk ≤ v(T ) and in turn, by monotonicity
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(10.1.3), it holds v(T ) = v(T ∪ {j}).
If i1 > i, then v(T∪{j}) = −c1 and once again by feasibility and monotonicity,

it holds v(T ∪ {j}) = v(T ). In both cases, it holds ∆v
j (T ) = 0. This proves

the relevant implication.

(ii) Firstly, (10.2.1) holds by super-additivity when S = ∅. Assume S ̸= ∅.
Secondly, if i = 1 (or j = 1), then, by (10.1.5), the equalities will be met in

(10.2.1). Assume 1 ̸∈ {i, j}. Thirdly, in case S = {1}, check (10.2.1) through

the following equivalence and implication (once again using (10.1.5)):

v({1, i, j})− v({1, i}) ≥ v({1, j})− v({1})

⇐⇒ v({i, j})− v({i}) ≥ v({j}) + c1 assuming i < j

⇐= ri ≥ v({i}) + c1

By Proposition1(iv-v), the convexity condition (10.2.1) holds. Fourthly, in

case 1 ∈ S, S ̸= {1}, then player 1 is a member of all four coalitions, each of

which with coalition size at least two, and so, (10.2.1) reduces to the following

condition:

v(T ∪{i})− v(T ) ≤ v(T ∪{i, j})− v(T ∪{j}) where T = S\{1} (10.2.2)

So far, it remains to check (10.2.2) only for coalitions T not containing player

1. Fifthly, we distinguish two cases. If v(T ∪ {j}) = v(T ), then (10.2.2)

holds by the monotonicity of the game ⟨N, v⟩ derived from (10.1.3) and thus,

v(T ∪ {i, j}) ≥ v(T ∪ {i}). If v(T ∪ {j}) > v(T ), i.e., ∆v
j (T ) > 0, then part

(i) implies ∆v
i (T ∪{j}) = ri. Together with (10.1.3) once again, we derive the

chain of (in)equalities:

v(T ∪ {i, j})− v(T ∪ {j}) = ∆v
i (T ∪ {j}) = ri ≥ v(T ∪ {i})− v(T )

This completes the full proof of convexity (10.2.2) of the Airport Profit game

⟨N, v⟩. 2

Remark 10.1. In the framework of the convexity constraint v({3, 4, 5}) −
v({3, 5}) ≥ v({4, 5}) − v({5}) of the form (10.2.2) applied with i = 4, j =
3, T = {5}, it violates our assumption i < j. Due to the symmetrical
roles of both players i and j in (10.2.2), we interchange both worths in that
v({3, 4, 5})− v({4, 5}) ≥ v({3, 5})− v({5}), of the form (10.2.2) applied with
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i = 3, j = 4, T = {5}, fulfilling the assumption i < j. According to the above
proof technique, the latter convexity constraint is solved in two steps. In case
of the assumption v({4, 5}) − v({5}) = 0, the latter constraint is solved by
monotonicity. Otherwise, the following implication applies:[
∆v

j (T ) > 0

]
=⇒

[
∆v

i (T∪{j}) = ri

]
, that is

[
∆v

4({5}) > 0

]
=⇒

[
∆v

3({4, 5}) =

r3

]
, that is v({4, 5})− v({5}) > 0 implies v({3, 4, 5})− v({4, 5}) = r3. 2

10.3 Characterizations of 1-convexity for Airport
Profit Games

Following Shapley’s pioneering research on convex games [54], the adapted

notion of 1-convexity requires that the characteristic function v : P(N) → R

satisfies a system of inequalities such that, for any non-trivial coalition S, its

coalitional contribution to the formation of the grand coalition N majorizes

the sum of all the individual benefits to the formation of the grand coalition

by the members of the coalition S, i.e., it holds [21]

v(N)−v(N\S) ≥
∑
j∈S

[
v(N)−v(N\{j})

]
for all S ⊆ N , S ̸= ∅, S ̸= N , i.e.,

(10.3.1)

0 ≤ gv(N) ≤ gv(S) for all S ⊆ N , S ̸= ∅ (10.3.2)

An arbitrary cooperative game ⟨N, v⟩ is said to be 1-convex if the non-

negative gap function attains its minimum at the grand coalition N . Gener-

ally speaking, n-person and (n− 1)-person coalitions have the same gap, i.e.,

gv(N\{i}) = gv(N) for all i ∈ N .

The goal of this Section is to present a list of necessary and sufficient condi-

tions on the revenues and costs for the n-person Airport Profit Game to be

1-convex. Recall bvi = v(N)− v(N\{i}) for all i ∈ N . An essential property of

the gap function for Airport Profit Games is the redundancy of the presence

of player 1. That is, gv(S) = gv(S\{1}) for all S ⊆ N with 1 ∈ S, S ̸= {1},
because bv1 = r1 = v(S) − v(S\{1}) by applying (10.1.5) twice. Moreover,

gv({1}) = bv1 − v({1}) = bv1 − r1 + c1 = c1. By the latter two properties, for
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three- and four-person games it holds

(i) A three-person Airport Profit Game is 1-convex if and only if 0 ≤ gv(N) ≤
c1 (since gv({2}) = gv({1, 2}) = gv(N) as well as gv({3}) = gv({1, 3}) =

gv(N))

(ii) A four-person Airport Profit Game is 1-convex if and only if 0 ≤ gv(N) ≤
gv({i}) for all i ∈ N (since gv({2, 3}) = gv({1, 2, 3}) = gv(N) etc. and

gv({1, 2}) = gv({2}) etc.)

Theorem 10.2. The following statements for the Airport Profit Game ⟨N, v⟩
are equivalent.
(i) The game is 1-convex, i.e., 0 ≤ gv(N) ≤ gv(S) for all S ⊆ N , S ̸= ∅
(ii) The gap function gv : P(N) → R is constant, i.e., gv(S) = gv(N) for all
S ⊆ N , S ̸= ∅
(iii) gv(S) = c1 for all S ⊆ N , S ̸= ∅
(iv) gv(S) = c1 for all S ⊆ N\{1}, S ̸= ∅
(v) gv(N) = c1
(vi) 0 ≤ gv(N) ≤ c1
(vii) v(S) =

∑
j∈S

bvj − v(S) for all S ⊆ N , S ̸= ∅.

Proof. Recall bv1 = v(N) − v(N\{1}) = r1 by (10.1.5). Thus, gv({1}) =
bv1 − v({1}) = c1.

Part (vii) states that the Airport Profit Game is 1-convex if and only if it is

strategically equivalent with the constant game leveled at −c1 (where the ad-

ditive part is caused by the vector of individual benefits). Notice that the con-

vexity of the Airport Profit Game implies the monotonicity of its correspond-

ing gap function since the particular convexity constraint v(S ∪ {i})− v(S) ≤
v(N) − v(N\{i}) = bvi is equivalent to gv(S ∪ {i}) ≥ gv(S) for all i ∈ N and

all S ⊆ N\{i}. Given all these facts, it is very simple to check the equivalence

of all seven statements, thus, we omit the proof here. 2

Example 10.1. Consider the n-person Airport Profit Game with unitary
revenues ri = 1 for all i ∈ N\{1}, except for the arbitrary revenue r1 ∈ R,
and the linearly increasing costs cs = s for all 1 ≤ s ≤ n. We claim that the
characteristic function v : P(N) → R of this Airport Profit Game is given by
v(S) = r1 − 1 if 1 ∈ S and v(S) = −1 otherwise. We check the worth v(S) for
any coalition S ⊆ N . Concerning the singletons, v({1}) = r1 − c1 = r1 − 1,
whereas v({i}) = max[−c1, ri − ci] = max[−1, 1 − i] = −1 for all i ̸= 1.
We proceed by induction on the coalition size. In case 1 ∈ S with s ≥ 2, then
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1 ∈ S\{iS}, and so, by induction hypothesis, v(S\{iS}) = r1 − 1 and in turn,
by (10.1.4),

v(S) = max

[
v(S\{iS}), r⃗(S)−ciS

]
= max

[
r1−1, r1+(s−1)−ciS

]
= r1−1

since iS ≥ s whenever 1 ∈ S. In case 1 ̸∈ S, then also 1 ̸∈ S\{iS}, and so, by
induction hypothesis, v(S\{iS}) = −1 and in turn,

v(S) = max

[
v(S\{iS}), r⃗(S) − ciS

]
= max[−1, s − ciS ] = −1 since iS ≥

s + 1 whenever 1 ̸∈ S. Finally, the individual benefit of any player i equals
bvi = v(N) − v(N\{i}) = 0 for all i ∈ N\{1}, where bv1 = r1, and in turn, its
gap function gv is constant at level one, i.e., gv(S) = 1 for all S ⊆ N , S ̸= ∅.
Particularly, this Airport Profit Game is 1-convex.

10.4 Bankruptcy Problem and Bankruptcy Game:
Notions

A bankruptcy problem arises when a person dies, leaving debts d1, d2, . . . ,

dn, totalling at least as much as the estate E, i.e., 0 ≤ E ≤
∑n

j=1 dj . The

problem is that the debts are mutually inconsistent in that the estate E is

insufficient to meet all of the debts. Without loss of generality, the creditors

may be ordered such that 0 = d0 ≤ d1 ≤ d2 ≤ . . . ≤ dn−1 ≤ dn (otherwise

renumber the heirs). Formally, a bankruptcy problem is defined as an ordered

pair ⟨E, d⃗⟩ with estate E as well as the vector d⃗ = (dj)
n
j=1 ∈ Rn of which the

coordinates are given by the debts [48]. Throughout their paper, the estate is

treated like a variable, varying from zero till the sum of the debts.

Definition 10.1. [1] With every bankruptcy problem ⟨E, d⃗⟩, there is as-
sociated the n-person bankruptcy game ⟨N, v

E,d⃗
⟩ of which the finite set N

consists of the n heirs (creditors) and the worth v
E,d⃗

(S) of coalition S ⊆ N

equals either zero or what is left of the estate after each member j ∈ N\S of
the complementary coalition N\S receives the debt dj , that is

v
E,d⃗

(S) = max

[
0, E−

∑
j∈N\S

dj

]
for all S ⊆ N , where v

E,d⃗
(N) = E

(10.4.1)
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We prefer to introduce, opposite to the estate, the variable surplus ϵ =∑n
j=1 dj − E ≥ 0 over all the debts. So, the surplus ϵ continuously increases

from the bottom zero-level up to the top level
∑n

j=1 dj as the estate decreases

from the top level down to the bottom zero-level. In this alternative setting,

the characteristic function of the bankruptcy game ⟨N, v
E,d⃗

⟩ may be rewritten

as

v
E,d⃗

(S) = max

[
0,

∑
j∈S

dj − ϵ

]
for all S ⊆ N (10.4.2)

Without loss of generality, it is tacitly assumed that the smallest debt differs

from zero, i.e., d1 > 0. Indeed, if d1 = 0, then player 1 is a so-called null-player

in the bankruptcy game ⟨N, v
E,d⃗

⟩ satisfying v
E,d⃗

(S ∪ {1}) = v
E,d⃗

(S) for all

S ⊆ N\{1}), and null-players are supposed to receive no award. Clearly, the

bankruptcy game satisfies monotonicity and moreover, it is well-known that

the bankruptcy game satisfies the convexity property 10.2.1. The main goal

of this Section is to investigate slightly adapted notions called k-convexity

[21], with clear affinities to convexity. We search for necessary and sufficient

conditions on the estate and the debts for the bankruptcy game to be k-convex.

Definition 10.2. Let k ∈ {1, 2, . . . , n}. The n-person game ⟨N, v⟩ is said to
be k-convex if its corresponding gap function gv : P(N) → R satisfies the
following three conditions [21]:

gv(S) ≥ gv(N) ≥ gv(T ) for all S, T ⊆ N with |S| ≥ k, |T | = k − 1

(10.4.3)

gv(T ∪ {i})− gv(T ) ≤ gv(S ∪ {i})− gv(S), (10.4.4)

for all i ∈ N , S ⊆ T ⊆ N\{i}, |T | ≤ k − 2

gv(N)−gv(T ) ≤ gv(S∪{i})−gv(S) for all i ∈ N , S ⊆ T ⊆ N\{i}, |T | = k − 1

(10.4.5)

In the setting of the sequential formation of the grand coalition N , the

k-convexity conditions (10.4.4)-(10.4.5) for the game v resemble the concavity

condition for the corresponding gap function gv, on the understanding that

individuals join the sequential formation one by one till coalition size k − 1,

whereas the last n + 1 − k players merge as one syndicate. By (10.4.3), gaps
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of coalitions with at least k players weakly majorize the gap of the grand

coalition N , while on its turn, the gap of the grand coalition weakly majorizes

the gaps of coalitions of size k − 1. Notice that (10.4.3)-(10.4.4), applied

to k = 1, agree with 1−convexity condition. Moreover, k-convexity for n-

person games, applied to k = n, fully agrees with the convexity condition.

Generally speaking, k-convexity andm-convexity are not compatible whenever

k ̸= m because of different levels for the gap of the grand coalition. For the

bankruptcy game, however, due to its convexity, we shall show that several

notions of k-convexity are compatible.

10.5 k-Convexity of Bankruptcy Games: approach
by figures

The forthcoming main result states necessary and sufficient conditions for

the k-convexity of the (convex) bankruptcy game. The proof technique is

based on depicting the table of the gap gv(S) of any non-empty coalition S

as a function of the variable surplus ϵ on its domain [0, d⃗(N)]. In fact, we

distinguish four types of coalitions, including the grand coalition. Throughout

the sequel, write v instead of v
E,d⃗

and for any coalition S, put d⃗(S) =
∑

j∈S dj ,

b⃗v(S) =
∑

j∈S bvj as well as gv(S) = b⃗v(S)−v(S), where bvi = v(N)−v(N\{i})
for all i ∈ N . Put d⃗(∅) = 0 = b⃗v(∅). Note that the convexity of a game ⟨N, v⟩
implies the monotonicity of its gap function gv in that gv(S ∪{i}) ≥ gv(S) for

all i ∈ N , all S ⊆ N\{i} (due to the convexity condition v(S ∪ {i})− v(S) ≤
v(N)− v(N\{i})).

Theorem 10.3. Consider the n-person bankruptcy problem with estate E > 0
and ordered debts 0 = d0 < d1 ≤ d2 ≤ . . . ≤ dn−1 ≤ dn. Put ϵ =

∑n
j=1 dj − E

and let 1 ≤ k ≤ n − 2. Then the corresponding bankruptcy game ⟨N, v
E,d⃗

⟩ of

the form (10.4.2) is k-convex if and only if

0 ≤ ϵ ≤
k∑

j=1

dj or equivalently,

n∑
j=k+1

dj ≤ E ≤
n∑

j=1

dj (10.5.1)

The tables 10.1,10.2 and 10.3 show the relationship among surplus ϵ, in-

dividual benefit bvi , i ∈ N and gap function which measures the surplus of the

individual benefit of its members over its worth. The calculations are simple,
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Table 10.1: The gap gv(S) as a function of ϵ.
surplus ϵ bvi gap gv(S) gap gv(N)

ϵ ≤ d⃗(N\{n}) di min[d⃗(S), ϵ] ϵ

ϵ > d⃗(N\{n})min

[
d⃗(N)− ϵ, di

]
−−−− d⃗(N\{n}) +

∑
j∈N,
j ̸=n

min

[
d⃗(N\{j})− ϵ, 0

]

Table 10.2: Consider coalition S satisfying d⃗(S) > d⃗(N\{n}).
surplus ϵ bvi gap gv(S)

d⃗(N\{n}) < ϵ ≤ min

[
d⃗(S), d⃗(N\{n− 1})

]
di, i ∈ S, i ̸= n d⃗(N\{n})

Table 10.3: Consider the k-person coalition Sk = {1, 2, . . . , k} where 1 ≤ k ≤
n− 2.

surplus ϵ bvi gap gv(Sk)

d⃗(N\{n− 1, n}) < ϵ ≤ d⃗(N\{n}) di gv(Sk) = d⃗(Sk) < ϵ = gv(N)

d⃗(N\{n}) ≤ ϵ < d⃗(N) min

[
d⃗(N)− ϵ, di

]
, i ̸= n gv(Sk) < gv(N)

thus, we omit them here.

Proposition 2. Firstly we describe the figure of the gap of the grand coalition
as a function of the variable surplus ϵ. For that purpose, partition the domain
[0, d⃗(N)] into the intervals Im, 0 ≤ m ≤ n, where the m-th interval is given by
Im = (d⃗(N\{n + 1 −m}), d⃗(N\{n −m})]. Put d⃗(N\{n + 1}) = 0 as well as
d⃗(N\{0}) = d⃗(N) with reference to the left- and right- endpoint of the domain.
Concerning the grand coalition N , it follows from the second line of Table 10.1
that the gap gv(N) is a linearly increasing function of ϵ, with slope 1, on the
first interval I0.
By the second line of Table 10.1, gv(N) is constant at the level d⃗(N\{n}) on
the second interval I1.
By the third line of Table 10.1, gv(N) is a piecewise linearly decreasing function
on any interval Im, 2 ≤ m ≤ n, with slope the negative sign of m − 1. For
instance, gv(N) = (n− 1) · d1 if ϵ = d⃗(N\{1}), whereas gv(N) = (n− 1) · d1+
(n− 2) · (d2 − d1) = d1 + (n− 2) · d2 if ϵ = d⃗(N\{2}).

Proposition 3. Let S ⊆ N , S ̸= ∅. For notation’ convenience, without loss of
generality, put S = {i1, i2, . . . , is} such that di1 ≤ di2 ≤ . . . ≤ dis . Put i0 = 0
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and d0 = 0.
Case one. Concerning any coalition S satisfying d⃗(S) ≤ d⃗(N\{n}), parti-
tion the domain into the intervals Jm, 0 ≤ m ≤ s+ 1, where the first interval
J0 = (0, d⃗(S)], the second interval J1 = (d⃗(S), d(N\{is})], and the m-th inter-
val, 2 ≤ m ≤ s + 1, is given by Jm = (d⃗(N\{is+2−m}), d⃗(N\{is+1−m})]. Put
d⃗(N\{i0}) = d⃗(N).
On the first interval J0, the gap gv(S) is a linearly increasing function of ϵ,
with slope 1, since gv(S) = b⃗v(S)− v(S) = b⃗v(S)− d⃗(S) + ϵ = ϵ.
The gap gv(S) is constant at the level d⃗(S) on the second interval J1.
The gap gv(S) is a piecewise linearly decreasing function on any interval Jm,
2 ≤ m ≤ s+1, with slope the negative sign of m−1. For instance, gv(S) = s·di1
if ϵ = d⃗(N\{i1}), whereas gv(S) = s ·di1 +(s−1) ·(di2 −di1) = di1 +(s−1) ·di2
if ϵ = d⃗(N\{i2}).
The constant level d⃗(S) on the second interval J1 is caused on the one hand
by v(S) = 0 and on the other by the coincidence bvi = di for all i ∈ S due to
Table 10.1.
Case two. Concerning any coalition S satisfying d⃗(S) > d⃗(N\{n}), note
that n ∈ S, write is = n, and, due to the partition Jm, 2 ≤ m ≤ s+ 1, of the
partial domain (d⃗(N\{n}), d⃗(N)], there exists a unique 1 ≤ t ≤ s such that
d⃗(S) ∈ Js+2−t.
On the first interval [0, d⃗(N\{n})], the gap gv(S) is a linearly increasing func-
tion of ϵ, with slope 1, because of the coincidence b⃗v = d⃗ and v(S) = d⃗(S)− ϵ.
By Table 10.2, the gap gv(S) continues to be constant for a while at level
d⃗(N\{n}) and next piecewise linearly decreasing till level zero. For its exact
description, we distinguish two subcases.
Subcase one. Suppose d⃗(S) ≤ d⃗(N\{n − 1}). On the first sub-interval
[d⃗(N\{n}), d⃗(S)] of interval J2, the gap gv(S) attains its maximum at con-
stant level d⃗(N\{n}), and is linearly decreasing with slope 1 on the second
sub-interval [d⃗(S), d⃗(N\{is−1})] of interval J2 (including the intermediate ϵ =
d⃗(N\{n− 1})). On the remaining intervals Jm, 3 ≤ m ≤ s+1, the gap gv(S)
is still linearly decreasing with slope m − 1, varying from slope 2 on J3 up to
slope s on Js+1.
Subcase two. Suppose d⃗(S) > d⃗(N\{n− 1}). Notice that n− 1 ∈ S. On the
full interval J2, the gap gv(S) attains its maximum at constant level d⃗(N\{n}).
On the intervals Jm, 3 ≤ m ≤ s + 1 − t, the gap gv(S) is piecewise linearly
decreasing with slope m − 2, varying from slope 1 on J3 up to slope s− 1− t
on Js+1−t. Interval Js+2−t is divided into two sub-intervals left and right from
its intermediate ϵ = d⃗(S) with slopes s − t and s + 1 − t respectively. On the
remaining intervals Jm, s+3− t ≤ m ≤ s+1, the gap gv(S) is still piecewise
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Table 10.4: The gaps gv(Sk) and gv(N) as a piecewise function of ϵ.
surplus ϵ gap gv(Sk) gap gv(N)

d⃗(N) 0 0

d⃗(N\{1}) k · d1 (n− 1) · d1

d⃗(N\{2}) k · d1 + (k − 1) · (d2 − d1) (n− 1) · d1 + (n− 2) · (d2 − d1)

= d1 + (k − 1) · d2 = d1 + (n− 2) · d2

d⃗(N\{3}) d1 + (k − 1) · d2 + (k − 2) · (d3 − d2) d1 + (n− 2) · d2 + (n− 3) · (d3 − d2)

= d1 + d2 + (k − 2) · d3 = d1 + d2 + (n− 3) · d3

d⃗(N\{k − 1}) d1 + d2 + . . .+ dk−2 + 2 · dk−1 d1 + . . .+ dk−2 + (n+ 1− k) · dk−1

d⃗(N\{k}) d⃗(Sk) d⃗(Sk) + (n− 1− k) · dk

d⃗(N\{n− 1}) d⃗(Sk) d⃗(N\{n})

d⃗(N\{n}) d⃗(Sk) d⃗(N\{n})

d⃗(Sk) d⃗(Sk) d⃗(Sk)

linearly decreasing with slope m− 1, varying from slope s+2− t on Js+3−t up
to slope s on Js+1.
Concerning the grand coalition S = N , the latter second subcase applies with
s = n, t = 1, and reduces to the former Proposition 2

10.6 Proof of Theorem 10.3

We distinguish a necessity and sufficiency part. Put Sk = {1, 2, . . . , k} where

1 ≤ k ≤ n− 2.

Proof of necessity part. From a detailed comparison of the gaps gv(Sk)

and gv(N), depicted as functions of the variable surplus ϵ, the figures show

that the tail of gv(N) strictly majorizes the tail of gv(Sk) (except for the de-

generated case ϵ = d⃗(N) yielding the zero game). For instance, on the last

interval In, the slope n−1 of gv(N) strictly majorizes the slope k of gv(Sk) and

similarly, on the last but one interval In−1, the slope n− 2 strictly majorizes

the slope k − 1 resulting in the levels d1 + (n− 2) · d2 versus d1 + (k − 1) · d2,
and so on. The reader is invited to study the next Table.
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Figure 1: The gaps gv(N) and gv(Sk) as a piecewise function of the variable surplus

ϵ

Through Figure 1 and Table 10.4, we conclude that gv(N) > gv(Sk) when-

ever ϵ > d⃗(Sk), ϵ ̸= d⃗(N). Thus, the k-convexity condition gv(Sk) ≥ gv(N)

for the k-person coalition Sk yields the necessary condition 0 ≤ ϵ ≤ d⃗(Sk)

(ignoring the degenerated case ϵ = d⃗(N)). 2

Proof of sufficiency part. Suppose 0 ≤ ϵ ≤ d⃗(Sk). We prove the k-

convexity conditions (10.4.3)–(10.4.5). Since 1 ≤ k ≤ n − 2, it holds that

ϵ ≤ d⃗(Sk) ≤ d⃗(N\{n}) and so, the first line of Table 10.1 applies stating

gv(N) = ϵ, and for any non-empty coalition S, its gap gv(S) is either ϵ or

d⃗(S), whichever is less.

Obviously, for all multi-person coalitions S ⊆ N with |S| ≥ k, it holds

ϵ ≤ d⃗(Sk) ≤ d⃗(S) and so, v(S) = d⃗(S) − ϵ ≥ 0, and consequently, gv(S) =

min[d⃗(S), ϵ] = ϵ = gv(N). Since the gap gv(N) is always at the current top

level ϵ, it holds gv(N) ≥ gv(T ) for all T ⊆ N with |T | = k − 1. Therefore,

(10.4.3) holds.

Next (10.4.4) holds by the convexity of bankruptcy games.

Finally, by (10.4.4), it holds gv(T ∪ {i})− gv(T ) ≤ gv(S ∪ {i})− gv(S) for all

i ∈ N,S ⊆ T ⊆ N\{i}, |T | ≤ k − 2, thus, gv(S ∪ {i}) − gv(S) + gv(T ) ≥
gv(T ∪ {i}). By (10.4.3), gv(T ∪ {i}) ≥ gv(N) for |T ∪ i| = k yielding

gv(S ∪ {i})− gv(S) + gv(T ) ≥ gv(N). This completes the proof of (10.4.5). 2
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10.7 Concluding Remarks

According to the main Theorem 10.1, the Airport Profit Game is shown to be

convex. Consequently, the 1−convexity property for the Airport Profit Game

arises only if the corresponding gap function is fully or partially constant at

the level of the cost c1 of the smallest aircraft. According to the second main

Theorem 10.3, the bankruptcy game is k-convex of any type whenever the

surplus ϵ is sufficiently small in that the surplus is at most the smallest debt.

In case the surplus is strictly more than the smallest debt, then the bankruptcy

game is not anymore 1-convex, while the other k-convex notions, 2 ≤ k ≤ n−2,

remain to be compatible, up to the critical number amounting the sum of the

two smallest debts. The 2-convexity property for the bankruptcy game gets

lost whenever the surplus strictly exceeds the sum of the two smallest debts,

and so on.
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